Are three-dimensional structures of proteins relevant in the study of cancer? The knowledge of the three-dimensional structure of a protein is crucial to gain a full understanding of its function, and structural determination has already shown its potential for guided drug design. The knowledge of the structures of proteins and their complexes with other biological macromolecules helps to elucidate functional networks and provide a better understanding of the functionally relevant behaviour of the molecular machinery of the cell. To study the cell, we must be able to work with proteins, to elucidate how they diffuse and move, to know their interacting partners, and to understand the changes induced by those interactions.
View Article and Find Full Text PDFCXCL12 (stromal cell-derived factor-1) is a potent CXC chemokine that is constitutively expressed by stromal resident cells. Although it is considered a homeostatic rather than an inflammatory chemokine, CXCL12 has been immunodetected in different inflammatory diseases, but also in normal tissues, ant its potential functions and regulation in inflammation are not well known. In this study, we examined the cellular sources of CXCL12 gene expression and the mechanism and effects of its interactions with endothelial cells in rheumatoid arthritis synovium.
View Article and Find Full Text PDF