Plants (Basel)
September 2024
Bacterial pustule (BP), caused by pv. , is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian isolates (IBS 333 and IBS 327).
View Article and Find Full Text PDFEffector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of Pp and identify new family members.
View Article and Find Full Text PDFSoybean rust (SBR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is a devastating foliar disease threatening soybean production. To date, no commercial cultivars conferring durable resistance to SBR are available. The development of long-lasting SBR resistance has been hindered by the lack of understanding of this complex pathosystem, encompassing challenges posed by intricate genetic structures in both the host and pathogen, leading to a gap in the knowledge of gene-for-gene interactions between soybean and P.
View Article and Find Full Text PDFcauses serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) genotypes.
View Article and Find Full Text PDFPlanta
September 2022
The overexpression of the GmGlb1-1 gene reduces plant susceptibility to Meloidogyne incognita. Non-symbiotic globin class #1 (Glb1) genes are expressed in different plant organs, have a high affinity for oxygen, and are related to nitric oxide (NO) turnover. Previous studies showed that soybean Glb1 genes are upregulated in soybean plants under flooding conditions.
View Article and Find Full Text PDFSoybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative trait loci (QTL).
View Article and Find Full Text PDFAsian Soybean Rust (ASR), a disease caused by , causing yield losses up to 90%. The control is based on the fungicides which may generate resistant fungi. The activation of the plant defense system, should help on ASR control.
View Article and Find Full Text PDFis a biotrophic fungus, causer of the disease Asian Soybean Rust, a severe crop disease of soybean and one that demands greater investment from producers. Thus, research efforts to control this disease are still needed. We investigated the expression of metabolites in soybean plants presenting a resistant genotype inoculated with through the untargeted metabolomics approach.
View Article and Find Full Text PDFA locus on chromosome 13, containing multiple TIR-NB-LRR genes and SNPs associated with M. javanica resistance, was identified using a combination of GWAS, resequencing, genetic mapping and expression profiling. Meloidogyne javanica, a root-knot nematode, is an important problem in soybean-growing areas, leading to severe yield losses.
View Article and Find Full Text PDFBackground: Small heat shock proteins (sHSPs) belong to the class of molecular chaperones that respond to biotic and abiotic stresses in plants. A previous study has showed strong induction of the gene GmHsp22.4 in response to the nematode Meloidogyne javanica in a resistant soybean genotype, while repression in a susceptible one.
View Article and Find Full Text PDFTerpenes produced by plants comprise a diverse range of secondary metabolites, including volatile organic compounds (VOCs). Terpene VOC production may be altered after damage or by biological stimuli such as bacterial, fungal and insects, and subsequent triggering of plant defense responses. These VOCs originate in plants from two independent pathways: the mevalonate and the methylerythritol phosphate pathways, which utilize dimethylallyl and isopentenyl diphosphates to form the terpenoidal precursors.
View Article and Find Full Text PDFPlant Physiol Biochem
June 2020
The biotrophic fungus Phakopsora pachyrhizi is currently the major pathogen affecting soybean production worldwide. It has already been suggested for the non-host interaction between P. pachyrhizi and Arabidopsis thaliana that the fungus in early infection induces jasmonic acid (JA) pathway to the detriment of the salicylic acid (SA) pathway as a mechanism to the establishment of infection.
View Article and Find Full Text PDFBackground: Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past.
View Article and Find Full Text PDFAsian soybean rust (ASR) is one of the most destructive diseases affecting soybeans. The causative agent of ASR, the fungus Phakopsora pachyrhizi, presents characteristics that make it difficult to study in vitro, limiting our knowledge of plant-pathogen dynamics. Therefore, this work used leaf lesion laser microdissection associated with deep sequencing to determine the pathogen transcriptome during compatible and incompatible interactions with soybean.
View Article and Find Full Text PDFBackground: Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown.
View Article and Find Full Text PDFGenet Mol Biol
December 2013
The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought.
View Article and Find Full Text PDFDrought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance.
View Article and Find Full Text PDFLactobacillus plantarum has been used in human clinical trials to promote beneficial effects in the immune system, to alleviate intestinal disorders, and to reduce the risk of cardiovascular disease. It is also involved in many fermentation processes in the food industry. However, information on the fate of ingested L.
View Article and Find Full Text PDFScientificWorldJournal
September 2013
Natural antisense ranscripts (NAT) are RNA molecules complementary to other endogenous RNAs. They are capable of regulating the expression of target genes at different levels (transcription, mRNA stability, translation, etc.).
View Article and Find Full Text PDFThe development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming. One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic stress defense responses. This work assessed the performance of soybean plants overexpressing the TF DREB1A under drought conditions in the field and in the greenhouse.
View Article and Find Full Text PDFSoybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in response to water deficit and to environmental diurnal changes is very important for unveiling water deficit stress tolerance mechanisms.
View Article and Find Full Text PDFFunct Integr Genomics
June 2013
Rhizobial surface polysaccharides (SPS) are, together with nodulation (Nod) factors, recognized as key molecules for establishment of rhizobia-legume symbiosis. In Rhizobium tropici, an important nitrogen-fixing symbiont of common bean (Phaseolus vulgaris L.), molecular structures and symbiotic roles of the SPS are poorly understood.
View Article and Find Full Text PDFBMC Genomics
March 2013
Background: Biological nitrogen fixation in root nodules is a process of great importance to crops of soybean [Glycine max (L.) Merr.], as it may provide the bulk of the plant's needs for nitrogen.
View Article and Find Full Text PDFReverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a robust and widely applied technique used to investigate gene expression. However, for correct analysis and interpretation of results, the choice of a suitable gene to use as an internal control is a crucial factor. These genes, such as housekeeping genes, should have a constant expression level in different tissues and across different conditions.
View Article and Find Full Text PDF