Influenza poses a substantial health risk, with infants and the elderly being particularly susceptible to its grave impacts. The primary challenge lies in its rapid genetic evolution, leading to the emergence of new Influenza A strains annually. These changes involve punctual mutations predominantly affecting the two main glycoproteins: Hemagglutinin (HA) and Neuraminidase (NA).
View Article and Find Full Text PDFWith the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including , and (ESKAPE).
View Article and Find Full Text PDFJ Nanobiotechnology
February 2022
Background: Within the last decade, genetic engineering and synthetic biology have revolutionized society´s ability to mass-produce complex biological products within genetically-modified microorganisms containing elegantly designed genetic circuitry. However, many challenges still exist in developing bioproduction processes involving genetically modified microorganisms with complex or multiple gene circuits. These challenges include the development of external gene expression regulation methods with the following characteristics: spatial-temporal control and scalability, while inducing minimal permanent or irreversible system-wide conditions.
View Article and Find Full Text PDFThe rise of methicillin-resistant Staphylococcus aureus (MRSA) infections has gained concern throughout the world over the past decades. Alternative therapeutic agents to antibiotics are rapidly growing to impede the proliferation of MRSA-caused infections. Lately, synthetic biology techniques have developed whole-cell biosensors by designing gene circuitry capable of sensing quorum-sensing (QS) molecules of pathogens and triggering expression of an antimicrobial moiety that kills MRSA and therefore prevents its further proliferation.
View Article and Find Full Text PDF