Publications by authors named "Francisco Vieira Dos Santos"

Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems.

View Article and Find Full Text PDF

Wound healing is a complex biological process. In this context, hyaluronic acid (HA) plays an important role in all phases of wound healing, from inflammation to the remodelling process. Nevertheless, its presence in adults decreases by 50% compared to newborns, which drastically reduces tissue regeneration.

View Article and Find Full Text PDF

In this study we prepared annatto-loaded cellulose acetate nanofiber scaffolds and evaluated both in vitro cytotoxicity and potential for wound healing in a rat model. Annatto extract, which has been used to accelerate wound healing, was added to cellulose acetate polymer and the resulting material was used to produce nanofiber scaffolds via electrospinning. Physicochemical, and thermal evaluation of the resulting nanofiber mats showed that incorporating annatto did not significantly affect the thermal or chemical stability of the polymer.

View Article and Find Full Text PDF

Knowledge of medicinal plants is often the only therapeutic resource of many communities and ethnic groups. "Erva-baleeira", Cordia verbenacea DC., is one of the species of plants currently exploited for the purpose of producing a phytotherapeutic product extracted from its leaves.

View Article and Find Full Text PDF