Publications by authors named "Francisco Sanz Rodriguez"

Functionalized upconverting nanoparticles (UCNPs) are promising theragnostic nanomaterials for simultaneous therapeutic and diagnostic purposes. We present two types of non-toxic eosin Y (EY) nanoconjugates derived from UCNPs as novel nanophotosensitizers (nano-PS) and deep-tissue bioimaging agents employing light at 800 nm. This excitation wavelength ensures minimum cell damage, since the absorption of water is negligible, and increases tissue penetration, enhancing the specificity of the photodynamic treatment (PDT).

View Article and Find Full Text PDF

Aims: Photodynamic therapy (PDT) is a treatment modality for several cancers involving the administration of a tumour-localising photosensitiser (PS) and its subsequent activation by light, resulting in tumour damage. Ras oncogenes have been strongly associated with chemo- and radio-resistance. Based on the described roles of adhesion and cell morphology on drug resistance, we studied if the differences in shape, cell-extracellular matrix and cell-cell adhesion induced by Ras transfection, play a role in the resistance to PDT.

View Article and Find Full Text PDF

Herein we report the synthesis and biological properties of sugar-conjugated oligophenylene ethynylene (OPE) dyes, used as novel photosensitizers (PSs) for photodynamic treatment (PDT) under blue light. The OPE-bearing glycosides at both ends are successfully prepared by a Pd-catalyzed Sonogashira cross-coupling reaction. The live-cell imaging studies have shown that these OPE glycosides (including glucose, mannose and maltose derivatives) efficiently penetrate the cytoplasm of cultured HeLa cancer cells.

View Article and Find Full Text PDF

We present the synthesis, photophysical properties, and biological application of nontoxic 3-azo-conjugated BODIPY dyes as masked fluorescent biosensors of hypoxia-like conditions. The synthetic methodology is based on an operationally simple N═N bond-forming protocol, followed by a Suzuki coupling, that allows for a direct access to simple and underexplored 3-azo-substituted BODIPY. These dyes can turn on their emission properties under both chemical and biological reductive conditions, including bacterial and human azoreductases, which trigger the azo bond cleavage, leading to fluorescent 3-amino-BODIPY.

View Article and Find Full Text PDF

There is an urgent need for contrast agents to detect the first inflammation stage of atherosclerosis by cardiovascular optical coherence tomography (CV-OCT), the imaging technique with the highest spatial resolution and sensitivity of those used during coronary interventions. Gold nanoshells (GNSs) provide the strongest signal by CV-OCT. GNSs are functionalized with the cLABL peptide that binds specifically to the ICAM-1 molecule upregulated in the first stage of atherosclerosis.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is an imaging technique currently used in clinical practice to obtain optical biopsies of different biological tissues in a minimally invasive way. Among the contrast agents proposed to increase the efficacy of this imaging method, gold nanoshells (GNSs) are the best performing ones. However, their preparation is generally time-consuming, and they are intrinsically costly to produce.

View Article and Find Full Text PDF

The implementation of in vivo fluorescence imaging as a reliable diagnostic imaging modality at the clinical level is still far from reality. Plenty of work remains ahead to provide medical practitioners with solid proof of the potential advantages of this imaging technique. To do so, one of the key objectives is to better the optical performance of dedicated contrast agents, thus improving the resolution and penetration depth achievable.

View Article and Find Full Text PDF

The bifunctional possibilities of Tm,Yb:GdVO@SiO core-shell nanoparticles for temperature sensing by using the near-infrared (NIR)-excited upconversion emissions in the first biological window, and biolabeling through the visible emissions they generate, were investigated. The two emission lines located at 700 and 800 nm, that arise from the thermally coupled F and H energy levels of Tm, were used to develop a luminescent thermometer, operating through the Fluorescence Intensity Ratio () technique, with a very high thermal relative sensitivity . Moreover, since the inert shell surrounding the luminescent active core allows for dispersal of the nanoparticles in water and biological compatible fluids, we investigated the penetration depth that can be realized in biological tissues with their emissions in the NIR range, achieving a value of 0.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is an imaging technique affording noninvasive optical biopsies. Like for other imaging techniques, the use of dedicated contrast agents helps better discerning biological features of interest during the clinical practice. Although bright OCT contrast agents have been developed, no dark counterpart has been proposed yet.

View Article and Find Full Text PDF

HIV remains incurable because of viral persistence in latent reservoirs that are inaccessible to antiretroviral therapy. A potential curative strategy is to reactivate viral gene expression in latently infected cells. However, no drug so far has proven to be successful in vivo in reducing the reservoir, and therefore new anti-latency compounds are needed.

View Article and Find Full Text PDF

In this article, we studied the production of the chemokine CXCL9, also termed Mig (monokine induced by gamma interferon) by cultured SJL/J mouse astrocytes infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV). This picornavirus induces demyelination in the SJL/J genetically susceptible strain of mice through an immune process mediated by CD4 Th1 T cells. Those cells were chemoattracted by chemokines inside the central nervous system (CNS) after blood-brain barrier (BBB) disruption.

View Article and Find Full Text PDF

Lanthanide-doped upconverting nanoparticles (UCNPs) have been studied for diverse biomedical applications due to their inherent ability to convert near-infrared (NIR) excitation light to higher energies (spanning the ultraviolet, visible, and NIR regions). To explore additional functionalities, rational combination with other optically active nanostructures may lead to the development of new multimodal nanoplatforms with theranostic (therapy and diagnostic) capabilities. Here, we develop a nanocomposite consisting of NaGdF:Er, Yb UCNPs, mesoporous silica (SiO), gold nanorods (GNRs) and a photosensitizer, with integrated functionalities including luminescence imaging, photothermal generation, nanothermometry and photodynamic effects.

View Article and Find Full Text PDF

There is an urgent need to develop new diagnosis tools for real in vivo detection of first stages of ischemia for the early treatment of cardiovascular diseases and accidents. However, traditional approaches show low sensitivity and a limited penetration into tissues, so they are only applicable for the detection of surface lesions. Here, it is shown how the superior thermal sensing capabilities of near infrared-emitting quantum dots (NIR-QDs) can be efficiently used for in vivo detection of subcutaneous ischemic tissues.

View Article and Find Full Text PDF

Precise knowledge and control over the orientation of individual upconverting particles is extremely important for full exploiting their capabilities as multifunctional bioprobes for interdisciplinary applications. In this work, we report on how time-resolved, single particle polarized spectroscopy can be used to determine the orientation dynamics of a single upconverting particle when entering into an optical trap. Experimental results have unequivocally evidenced the existence of a unique stable configuration.

View Article and Find Full Text PDF

The always present and undesired contribution of autofluorescence is here completely avoided by combining a simple time gating technology with long lifetime neodymium doped infrared-emitting nanoparticles.

View Article and Find Full Text PDF

Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown.

View Article and Find Full Text PDF

The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing, allowing for the performance of minimally invasive experiments, not only in living cells but also in more challenging small animal models. Here, the potential use of active-core/active-shell Nd(3+)- and Yb(3+)-doped nanoparticles as subcutaneous thermal probes has been evaluated. These temperature nanoprobes operate in the infrared transparency window of biological tissues, enabling deep temperature sensing into animal bodies thanks to the temperature dependence of their emission spectra that leads to a ratiometric temperature readout.

View Article and Find Full Text PDF

3D optical manipulation of a thermal-sensing upconverting particle allows for the determination of the extension of the thermal gradient created in the surroundings of a plasmonic-mediated photothermal-treated HeLa cancer cell.

View Article and Find Full Text PDF

Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities.

View Article and Find Full Text PDF

Small animal deep-tissue fluorescence imaging in the second Biological Window (II-BW, 1000-1350 nm) is limited by the presence of undesirable infrared-excited, infrared-emitted (900-1700 nm) autofluorescence whose origin, spectral properties and dependence on strains is still unknown. In this work, the infrared autofluorescence and laser-induced whole body heating of five different mouse strains with distinct coat colors (black, grey, agouti, white and nude) has been systematically investigated. While neither the spectral properties nor the magnitude of organ autofluorescence vary significantly between mouse strains, the coat color has been found to strongly determine both the autofluorescence intensity as well as the laser-induced whole body heating.

View Article and Find Full Text PDF

In this study, we demonstrate the upregulation in the expression of caspases 1 and 11 by SJL/J mouse brain astrocytes infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV). The upregulation of both proteases hints at protection of astrocytic cells from apoptotic death. We therefore looked for the reason of the demonstrated absence of programmed cell death in BeAn-infected SJL/J astrocytes.

View Article and Find Full Text PDF

Hybrid nanostructures containing neodymium-doped nanoparticles and infrared-emitting quantum dots constitute highly sensitive luminescent thermometers operating in the second biological window. They demonstrate that accurate subtissue fluorescence thermal sensing is possible.

View Article and Find Full Text PDF

Even though the efficacy of photodynamic therapy (PDT) for treating premalignant and malignant lesions has been demonstrated, resistant tumor cells to this therapy occasionally appear. Here, we describe the published methods to isolate resistant cancer cells to PDT and propose new procedures that may be used, as laboratory models allow a better understanding of resistance mechanisms. For this purpose, the treatment conditions, the photosensitizer (PS) or pro-drug, the cell line and the final selection - clonal of total population - must be taken into account.

View Article and Find Full Text PDF

The aim of this work was to synthesize new corrole β-cyclodextrin conjugates βCD1 (with one β-cyclodextrin moiety) and βCD2 (with two β-cyclodextrin moieties) from 5,10,15-tris(pentafluorophenyl)corrole (TPFC) and to test in vitro the efficacy of these compounds towards tumoral HeLa cells. No dark cytotoxicity was observed for TPFC and βCD1 at the concentration used for PDT cell treatment, even during long incubation periods (24 h). Fluorescence microscopy showed that TPFC and βCD1 accumulate in HeLa cells at lysosomes and in the Golgi apparatus, respectively.

View Article and Find Full Text PDF