A long-standing goal of neuroimaging is the non-invasive volumetric assessment of whole brain function and structure at high spatial and temporal resolutions. Functional ultrasound (fUS) and ultrasound localization microscopy (ULM) are rapidly emerging techniques that promise to bring advanced brain imaging and therapy to the clinic with the safety and low-cost advantages associated with ultrasound. fUS has been used to study cerebral hemodynamics at high temporal resolutions while ULM has been used to study cerebral microvascular structure at high spatial resolutions.
View Article and Find Full Text PDFUsing high frame-rate ultrasound and ¡1μm sensitive motion tracking we previously showed that shear waves at the surface of ex vivo and in situ brains develop into shear shock waves deep inside the brain, with destructive local accelerations. However post-mortem tissue cannot develop injuries and has different viscoelastodynamic behavior from in vivo tissue. Here we present the ultrasonic measurement of the high-rate shear shock biomechanics in the in vivo porcine brain, and histological assessment of the resulting axonal pathology.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2023
Glioblastoma is an aggressive brain cancer with a very poor prognosis in which less than 6% of patients survive more than five-year post-diagnosis. The outcome of this disease for many patients may be improved by early detection. This could provide clinicians with the information needed to take early action for treatment.
View Article and Find Full Text PDFStructure and function of the microvasculature provides critical information about disease state, can be used to identify local regions of pathology, and has been shown to be an indicator of response to therapy. Improved methods of assessing the microvasculature with non-invasive imaging modalities such as ultrasound will have an impact in biomedical theranostics. Ultrasound localization microscopy (ULM) is a new technology which allows processing of ultrasound data for visualization of microvasculature at a resolution better than allowed by acoustic diffraction with traditional ultrasound systems.
View Article and Find Full Text PDFDirect measurement of brain motion at high spatio-temporal resolutions during impacts has been a persistent challenge in brain biomechanics. Using high frame-rate ultrasound and high sensitivity motion tracking, we recently showed shear waves sent to the ex vivo porcine brain developing into shear shock waves with destructive local accelerations inside the brain, which may be a key mechanism behind deep traumatic brain injuries. Here we present the ultrasound observation of shear shock waves in the acoustically challenging environment of the in situ porcine brain during a single-shot impact with sinusoidal and haversine time profiles.
View Article and Find Full Text PDFSuper-resolution ultrasound imaging relies on the sub-wavelength localization of microbubble contrast agents. By tracking individual microbubbles, the velocity and flow within microvessels can be estimated. It has been shown that the average flow velocity, within a microvessel ranging from tens to hundreds of microns in diameter, can be measured.
View Article and Find Full Text PDFObjective: Despite recent advancements in targeted therapy and immunotherapies, prognosis for metastatic melanoma patients remains extremely poor. Development of resistance to previously effective treatments presents a serious challenge and new approaches for melanoma treatment are urgently needed. The objective of this study was to examine the effects of telmisartan, an AGTR1 inhibitor and a partial agonist of PPARγ, on melanoma cells as a potential agent for repurposing in melanoma treatment.
View Article and Find Full Text PDFThe propagation of mechanical energy in granular materials has been intensively studied in recent years given the wide range of fields that have processes related to this phenomena, from geology to impact mitigation and protection of buildings and structures. In this paper, we experimentally explore the effect of an interstitial fluid on the dynamics of the propagation of a mechanical pulse in a granular packing under controlled confinement pressure. The experimental results reveal the occurrence of an elastohydrodynamic mechanism at the scale of the contacts between wet particles.
View Article and Find Full Text PDFThe effects of friction mobilization on the stress profile within a two-dimensional silo are investigated via simulations of discrete elements. Friction mobilization is driven by cyclic vertical displacement of the sidewalls. Two regimes have been observed for small filling height, with stress profiles identified as saturated (Janssen's profile) and exponentially growing.
View Article and Find Full Text PDFMechanical impulse propagation in granular media depends strongly on the imposed confinement conditions. In this work, the propagation of sound in a granular packing contained by flexible walls that enable confinement under hydrostatic pressure conditions is investigated. This configuration also allows the form of the input impulse to be controlled by means of an instrumented impact pendulum.
View Article and Find Full Text PDFCáhuil Lagoon in central Chile harbors distinct microbial communities in various solar salterns that are arranged as interconnected ponds with increasing salt concentrations. Here, we report the metagenome of the 3.0- to 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
A zero-temperature critical point has been invoked to control the anomalous behavior of granular matter as it approaches jamming or mechanical arrest. Criticality manifests itself in an anomalous spectrum of low-frequency normal modes and scaling behavior near the jamming transition. The critical point may explain the peculiar mechanical properties of dissimilar systems such as glasses and granular materials.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2011
We study experimentally the interaction between two solitary waves that approach one another in a linear chain of spheres interacting via the Hertz potential. When these counterpropagating waves collide, they cross each other and a phase shift in respect to the noninteracting waves is introduced as a result of the nonlinear interaction potential. This observation is well reproduced by our numerical simulations and is shown to be independent of viscoelastic dissipation at the bead contact.
View Article and Find Full Text PDFThe eastern tropical Pacific Ocean holds two of the main oceanic oxygen minimum zones of the global ocean. The presence of an oxygen-depleted layer at intermediate depths, which also impinges on the seafloor and in some cases the euphotic zone, plays a significant role in structuring both pelagic and benthic communities, and also in the vertical partitioning of microbial assemblages. Here, we assessed the genetic diversity and distribution of natural populations of the cyanobacteria Prochlorococcus and Synechococcus within oxic and suboxic waters of the eastern tropical Pacific using cloning and sequencing, and terminal restriction fragment length polymorphism (T-RFLP) analyses applied to the 16S-23S rRNA internal transcribed spacer region.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2009
We report observations of mechanical energy localization in a strongly nonlinear discrete lattice. The experimental setup we consider is a one-dimensional nonloaded horizontal chain of identical spheres interacting via the nonlinear Hertz potential which contains a mass defect. Our experiments show that the interaction of a solitary wave with a light intruder excites a nonlinear localized mode.
View Article and Find Full Text PDFA one-dimensional dry granular medium, a chain of beads which interact via the nonlinear Hertz potential, exhibits strongly nonlinear behaviors. When such an alignment further contains some fluid in the interstices between grains, it may exhibit new interesting features. We report some recent experiments, analysis and numerical simulations concerning nonlinear wave propagation in dry and wet chains of spheres.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2006
We present an experimental study of the mechanical impulse propagation through a horizontal alignment of elastic spheres of progressively decreasing diameter phi(n): namely, a tapered chain. Experimentally, the diameters of spheres which interact via the Hertz potential are selected to keep as close as possible to an exponential decrease, phi(n+1) = (1-q)phi(n), where the experimental tapering factor is either q(1) approximately equal to 5.60% or q(2) approximately equal to 8.
View Article and Find Full Text PDFOsteoblasts, the cells responsible for bone formation, derive from mesenchymal stem cells (MSCs) in bone marrow. To acquire a new cell phenotype, uncommitted MSCs must undergo several proliferation and differentiation changes. Although, it is known that extracellular signal-regulated protein kinases (ERKs) mitogen-activated protein (MAP) kinase pathway signaling is involved in the proliferation and differentiation processes, the role of ERKs in osteogenic differentiation it is controversial, at present.
View Article and Find Full Text PDF