Publications by authors named "Francisco Sanchez-Arevalo"

The development of injectable hydrogels with natural biopolymers such as gelatin (Ge) and hyaluronic acid (Ha) is widely performed due to their biocompatibility and biodegradability. The combination of both polymers crosslinked with N-Ethyl-N'-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) can be used as an innovative dermal filler that stimulates fibroblast activity and increases skin elasticity and tightness. Thus, crosslinked Ge/Ha hydrogels with different concentrations of EDC were administered subcutaneously to test their efficacy in young and old rats.

View Article and Find Full Text PDF

We demonstrate a novel structure based on smart carbon nanocomposites intended for fabricating laser-triggered drug delivery devices (DDDs). The performance of the devices relies on nanocomposites' photothermal effects that are based on polydimethylsiloxane (PDMS) with carbon nanoparticles (CNPs). Upon evaluating the main features of the nanocomposites through physicochemical and photomechanical characterizations, we identified the main photomechanical features to be considered for selecting a nanocomposite for the DDDs.

View Article and Find Full Text PDF

Chronic wounds are a global health problem, and their treatments are difficult and long lasting. The development of medical devices through tissue engineering has been conducted to heal this type of wound. In this study, it was demonstrated that the combination of natural and synthetic polymers, such as poly (D-L lactide-co-glycolide) (PLGA) and gelatin (Ge), were useful for constructing scaffolds for wound healing.

View Article and Find Full Text PDF

We demonstrate random laser (RL) emission from within bovine pericardium (BP) tissue. The interest in BP relies on its wide use as a valve replacement and as a biological patch. By imaging the emitting tissue, we show that RL emission is mostly generated inside the collagen fibers.

View Article and Find Full Text PDF

Background And Aim: The need of comfortable and safe prosthetic systems is an important challenge for both prosthetists and engineers. The aim of this technical note is to demonstrate the use of three-dimensional digital image correlation to evaluate mechanical response of two prosthetic systems under real patient dynamic loads.

Technique: This note describes the use of three-dimensional digital image correlation method to obtain full-field strain and displacement measurements on the surface of two lower limb prostheses for Chopart amputation.

View Article and Find Full Text PDF
Article Synopsis
  • The integration of nanotechnology into polymer membranes, particularly those made from polydimethylsiloxane (PDMS) with embedded carbon nanoparticles, enhances their optical and thermal properties.
  • The study emphasizes the influence of physical factors like nanoparticle concentration and geometry on the photothermal effects, which can be controlled to achieve different outcomes.
  • Novel applications include low-power laser-assisted micro-patterning and potential uses in photonic and microfluidic devices, showcasing the versatility of these light-responsive membranes.
View Article and Find Full Text PDF

Mechanical characterization of tissue is an important but complex task. We demonstrate the simultaneous use of Mueller matrix imaging (MMI), enhanced backscattering (EBS) and digital image correlation (DIC) in a bovine pericardium (BP) tensile test. The interest in BP relies on its wide use as valve replacement and biological patch.

View Article and Find Full Text PDF

Complete rupture of the anterior cruciate ligament (ACL) is a common problem in orthopedics. At present, there are many techniques to reconstruct ligaments, which include the use of autografts, allografts, and, in some cases, artificial ligaments. The latter have not provided good results in the short, medium, and long term.

View Article and Find Full Text PDF