In spite of the increasing availability of genomic and transcriptomic data, there is still a gap between the detection of perturbations in gene expression and the understanding of their contribution to the molecular mechanisms that ultimately account for the phenotype studied. Alterations in the metabolism are behind the initiation and progression of many diseases, including cancer. The wealth of available knowledge on metabolic processes can therefore be used to derive mechanistic models that link gene expression perturbations to changes in metabolic activity that provide relevant clues on molecular mechanisms of disease and drug modes of action (MoA).
View Article and Find Full Text PDFUnderstanding the aspects of the cell functionality that account for disease or drug action mechanisms is a main challenge for precision medicine. Here we propose a new method that models cell signaling using biological knowledge on signal transduction. The method recodes individual gene expression values (and/or gene mutations) into accurate measurements of changes in the activity of signaling circuits, which ultimately constitute high-throughput estimations of cell functionalities caused by gene activity within the pathway.
View Article and Find Full Text PDFUnlabelled: : CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API.
View Article and Find Full Text PDFThe discovery of actionable targets is crucial for targeted therapies and is also a constituent part of the drug discovery process. The success of an intervention over a target depends critically on its contribution, within the complex network of gene interactions, to the cellular processes responsible for disease progression or therapeutic response. Here we present PathAct, a web server that predicts the effect that interventions over genes (inhibitions or activations that simulate knock-outs, drug treatments or over-expressions) can have over signal transmission within signaling pathways and, ultimately, over the cell functionalities triggered by them.
View Article and Find Full Text PDFMany complex traits, as drug response, are associated with changes in biological pathways rather than being caused by single gene alterations. Here, a predictive framework is presented in which gene expression data are recoded into activity statuses of signal transduction circuits (sub-pathways within signaling pathways that connect receptor proteins to final effector proteins that trigger cell actions). Such activity values are used as features by a prediction algorithm which can efficiently predict a continuous variable such as the IC50 value.
View Article and Find Full Text PDFBabelomics has been running for more than one decade offering a user-friendly interface for the functional analysis of gene expression and genomic data. Here we present its fifth release, which includes support for Next Generation Sequencing data including gene expression (RNA-seq), exome or genome resequencing. Babelomics has simplified its interface, being now more intuitive.
View Article and Find Full Text PDFModern sequencing technologies produce increasingly detailed data on genomic variation. However, conventional methods for relating either individual variants or mutated genes to phenotypes present known limitations given the complex, multigenic nature of many diseases or traits. Here we present PATHiVar, a web-based tool that integrates genomic variation data with gene expression tissue information.
View Article and Find Full Text PDFBackground: Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine.
Results: Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated.
Whole-exome sequencing has become a fundamental tool for the discovery of disease-related genes of familial diseases and the identification of somatic driver variants in cancer. However, finding the causal mutation among the enormous background of individual variability in a small number of samples is still a big challenge. Here we describe a web-based tool, BiERapp, which efficiently helps in the identification of causative variants in family and sporadic genetic diseases.
View Article and Find Full Text PDFSignaling pathways constitute a valuable source of information that allows interpreting the way in which alterations in gene activities affect to particular cell functionalities. There are web tools available that allow viewing and editing pathways, as well as representing experimental data on them. However, few methods aimed to identify the signaling circuits, within a pathway, associated to the biological problem studied exist and none of them provide a convenient graphical web interface.
View Article and Find Full Text PDFGenome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management.
View Article and Find Full Text PDFDuring the past years, the advances in high-throughput technologies have produced an unprecedented growth in the number and size of repositories and databases storing relevant biological data. Today, there is more biological information than ever but, unfortunately, the current status of many of these repositories is far from being optimal. Some of the most common problems are that the information is spread out in many small databases; frequently there are different standards among repositories and some databases are no longer supported or they contain too specific and unconnected information.
View Article and Find Full Text PDFThe massive use of Next-Generation Sequencing (NGS) technologies is uncovering an unexpected amount of variability. The functional characterization of such variability, particularly in the most common form of variation found, the Single Nucleotide Variants (SNVs), has become a priority that needs to be addressed in a systematic way. VARIANT (VARIant ANalyis Tool) reports information on the variants found that include consequence type and annotations taken from different databases and repositories (SNPs and variants from dbSNP and 1000 genomes, and disease-related variants from the Genome-Wide Association Study (GWAS) catalog, Online Mendelian Inheritance in Man (OMIM), Catalog of Somatic Mutations in Cancer (COSMIC) mutations, etc).
View Article and Find Full Text PDFTranscription factors (TFs) and miRNAs are the most important dynamic regulators in the control of gene expression in multicellular organisms. These regulatory elements play crucial roles in development, cell cycling and cell signaling, and they have also been associated with many diseases. The Regulatory Network Analysis Tool (RENATO) web server makes the exploration of regulatory networks easy, enabling a better understanding of functional modularity and network integrity under specific perturbations.
View Article and Find Full Text PDF