Publications by authors named "Francisco Prats Quilez"

A label-free sensor, based on the combination of silicon photonic bandgap (PBG) structures with immobilized molecular beacon (MB) probes, is experimentally developed. Complementary target oligonucleotides are specifically recognized through hybridization with the MB probes on the surface of the sensing structure. This combination of PBG sensing structures and MB probes demonstrates an extremely high sensitivity without the need for complex PCR-based amplification or labelling methods.

View Article and Find Full Text PDF

An experimental study of the influence of the conformational change suffered by molecular beacon (MB) probes-upon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensors-is reported. To this end, high sensitivity photonic sensors based on silicon photonic bandgap (PBG) structures were used, where the MB probes were immobilized via their 5' termination. Those MBs incorporate a biotin moiety close to their 3' termination in order to selectively bind a streptavidin molecule to them.

View Article and Find Full Text PDF

A highly sensitive photonic sensor based on a porous silicon ring resonator was developed and experimentally characterized. The photonic sensing structure was fabricated by exploiting a porous silicon double layer, where the top layer of a low porosity was used to form photonic elements by e-beam lithography and the bottom layer of a high porosity was used to confine light in the vertical direction. The sensing performance of the ring resonator sensor based on porous silicon was compared for the different resonances within the analyzed wavelength range both for transverse-electric and transverse-magnetic polarizations.

View Article and Find Full Text PDF

Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer.

View Article and Find Full Text PDF