Introduction: In the context of climate change, monitoring the spatial and temporal variability of plant physiological parameters has become increasingly important. Remote spectral imaging and GIS software have shown effectiveness in mapping field variability. Additionally, the application of machine learning techniques, essential for processing large data volumes, has seen a significant rise in agricultural applications.
View Article and Find Full Text PDFThe use of reclaimed water for agricultural irrigation is among the agronomic practices being increasingly valued by policy-makers, water planners, and regulators to pursue more sustainable resource management in many arid and semi-arid agricultural production areas worldwide. This practice can make additional supply available in water-scarce areas, provide crop nutrients, and reduce the disposal of wastewater to the environment, thus providing considerable agronomic and environmental benefits. However, the process for treated wastewater reuse is complex because of multiple interactions among technical, economic, environmental, and public health related aspects.
View Article and Find Full Text PDFThe global water crisis, driven by water scarcity and water quality deterioration, is expected to continue and intensify in dry and overpopulated areas, and will play a critical role in meeting future agricultural demands. Sustainability of agriculture irrigated with low quality water will require a comprehensive approach to soil, water, and crop management consisting of site- and situation-specific preventive measures and management strategies. Other problem related with water quality deterioration is soil salinization.
View Article and Find Full Text PDFThe 70% worldwide surface of olive orchards is irrigated. The evaluation of non-conventional water resources and water-saving techniques has gained importance during the last decades in arid and semiarid environments. This study evaluated the effects of irrigation with two water sources: low-cost water DEsalination and SEnsoR Technology (DESERT) desalinated water (DW) EC ∼1 dS m) and reclaimed water (RW) (EC ∼ 3 dS m) combined with two irrigation strategies: full irrigation (FI) (100% of ET) and regulated deficit irrigation (RDI, 50% of ET) on fruit yield, ripening indices, and oil yield and quality of olive trees cv Arbosana planted in Mediterranean conditions.
View Article and Find Full Text PDFThe DESERT-prototype, a state-of-the-art compact combination of water treatment technologies based on filtration and solar-based renewable energy, was employed to reclaim water for agricultural irrigation. Water reclaimed through the DESERT-prototype (PW) from a secondary effluent of a wastewater treatment plant, as well as conventional irrigation water (CW) and the secondary effluent (SW) itself, were employed to cultivate baby romaine lettuces in a greenhouse in Murcia (Spain), by means of drip and sprinkler irrigation methods, thus establishing six treatments. Assessments of physicochemical and microbiological quality of irrigation water, as well as agronomic and microbiological quality of crops from all treatments, showed that results associated to PW complied in all cases with relevant standards and guidelines.
View Article and Find Full Text PDFThe impact of reclaimed and surface water on the microbiological safety of hydroponic tomatoes was assessed. Greenhouse tomatoes were irrigated with reclaimed and surface water and grown on two hydroponic substrates (coconut fiber and rock wool). Water samples (n=208) were taken from irrigation water, with and without the addition of fertilizers and drainage water, and hydroponic tomatoes (n=72).
View Article and Find Full Text PDF