Publications by authors named "Francisco Ocana-Calahorro"

Over the last decades, several studies have reported emissions of nitrous oxide (N O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes).

View Article and Find Full Text PDF

The green alga Chlamydomonas is a valuable model system capable of assimilating different forms of nitrogen (N). Nitrate (NO3-) has a relevant role in plant-like organisms, first as a nitrogen source for growth and second as a signalling molecule. Several modules are necessary for Chlamydomonas to handle nitrate, including transporters, nitrate reductase (NR), nitrite reductase (NiR), GS/GOGAT enzymes for ammonium assimilation, and regulatory protein(s).

View Article and Find Full Text PDF

The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling.

View Article and Find Full Text PDF

Nitric oxide (NO) is a relevant signal molecule involved in many plant processes. However, the mechanisms and proteins responsible for its synthesis are scarcely known. In most photosynthetic organisms NO synthases have not been identified, and Nitrate Reductase (NR) has been proposed as the main enzymatic NO source, a process that in vitro is also catalysed by other molybdoenzymes.

View Article and Find Full Text PDF

Nitric oxide (NO) has emerged as an important regulator of the nitrogen assimilation pathway in plants. Nevertheless, this free radical is a double-edged sword for cells due to its high reactivity and toxicity. Hemoglobins, which belong to a vast and ancestral family of proteins present in all kingdoms of life, have arisen as important NO scavengers, through their NO dioxygenase (NOD) activity.

View Article and Find Full Text PDF

The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported.

View Article and Find Full Text PDF

Hemoglobins are ubiquitous proteins that sense, store and transport oxygen, but the physiological processes in which they are implicated is currently expanding. Recent examples of previously unknown hemoglobin functions, which include scavenging of the signaling molecule nitric oxide (NO), illustrate how the implication of hemoglobins in different cell signaling processes is only starting to be unraveled. The extent and diversity of the hemoglobin protein family suggest that hemoglobins have diverged and have potentially evolved specialized functions in certain organisms.

View Article and Find Full Text PDF

Nitrate and ammonium are major inorganic nitrogen sources for plants and algae. These compounds are assimilated by means of finely regulated processes at transcriptional and post-translational levels. In Chlamydomonas, the expression of several genes involved in high-affinity ammonium (AMT1.

View Article and Find Full Text PDF

Background: The small intestinal epithelium functions both to absorb nutrients, and to provide a barrier between the outside, luminal, world and the human body. One of the passageways across the intestinal epithelium is paracellular diffusion, which is controlled by the properties of tight junction complexes. We used a differentiated Caco-2 monolayer as a model for small intestinal epithelium to study the effect of crude apple extracts on paracellular permeability.

View Article and Find Full Text PDF