The electric stimulation (ES) of the cornea is a novel therapeutic approach to the treatment of degenerative visual diseases. Currently, ES is delivered by placing a mono-element electrode on the surface of the cornea that uniformly stimulates the eye along the electrode site. It has been reported that a certain degree of correlation exists between the location of the stimulated retinal area and the position of the electrode.
View Article and Find Full Text PDFIn the present work, we developed hybrid nanostructures based on ZnO films deposited on macroporous silicon substrates using the sol-gel spin coating and ultrasonic spray pyrolysis (USP) techniques. The changes in the growth of ZnO films on macroporous silicon were studied using a UV-visible spectrometer, an X-ray diffractometer (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD analysis revealed the beneficial influence of macroporous silicon on the structural properties of ZnO films.
View Article and Find Full Text PDFPorous Si-SiO UV microcavities are used to modulate a broad responsivity photodetector (GVGR-T10GD) with a detection range from 300 to 510 nm. The UV microcavity filters modified the responsivity at short wavelengths, while in the visible range the filters only attenuated the responsivity. All microcavities had a localized mode close to 360 nm in the UV-A range, and this meant that porous Si-SiO filters cut off the photodetection range of the photodetector from 300 to 350 nm, where microcavities showed low transmission.
View Article and Find Full Text PDF