Animals (Basel)
September 2024
This study aims to develop three-dimensional printing models of the bony nasal cavity and paranasal sinuses of big and domestic cats using reconstructed computed tomographic images. This work included an exhaustive study of the osseous nasal anatomy of the domestic cat carried out through dissections, bone trepanations and sectional anatomy. With the use of OsiriX viewer, the DICOM images were postprocessed to obtaining maximum-intensity projection and volume-rendering reconstructions, which allowed for the visualization of the nasal cavity structures and the paranasal sinuses, providing an improvement in the future anatomical studies and diagnosis of pathologies.
View Article and Find Full Text PDFAnimals (Basel)
April 2024
The objective of this work was to study the normal anatomy of the nasal cavity of the three species of big cats (leopard, lion, and cheetah) compared to the domestic cat through the use of computed tomography, magnetic resonance imaging, and rhinoscopy. Computed tomography allowed us to clearly visualize the entire bony and cartilaginous framework that supports the nasal cavity. Magnetic resonance imaging permitted better visualization of the soft tissues of this cavity.
View Article and Find Full Text PDFVet Sci
December 2023
This study describes the anatomical characteristics of the abdominal and pelvic vascular system of two healthy mature female cats via three-dimensional contrast enhanced computed tomography angiography, non-contrast enhanced magnetic resonance angiography and three-dimensional printing. Volume-rendering computed tomography angiography images were acquired from the ventral aspect using RadiAnt, Amira and OsiriX MD Dicom three-dimensional formats, and three-dimensional printing was obtained and compared with the corresponding computed tomography angiography images. Non-contrast enhanced magnetic resonance angiography was made using the time-of-flight imaging in ventral, oblique and lateral views.
View Article and Find Full Text PDFAnimals (Basel)
May 2023
In this study, six adult feline cadavers were examined using CTA, 3D printing, and casts injected with epoxy. The aorta, the portal vein, and the gallbladder of 3 feline cadavers were separately injected with a 50% mixture of colored vulcanized latex and hydrated barium sulfate as contrast medium to analyze by CT the arterial, venous and biliary systems. The other three cadavers were injected with a mixture of epoxy resin in the aorta, gallbladder and hepatic veins, separately.
View Article and Find Full Text PDFAnimals (Basel)
May 2021
In this work, the fetal and newborn anatomical structures of the dolphin oropharyngeal cavities were studied. The main technique used was endoscopy, as these cavities are narrow tubular spaces and the oral cavity is difficult to photograph without moving the specimen. The endoscope was used to study the mucosal features of the oral and pharyngeal cavities.
View Article and Find Full Text PDFAnimals (Basel)
February 2021
Our goal was to analyze the main anatomical structures of the dolphin external nose and nasal cavity from fetal developmental stages to adult. Endoscopy was used to study the common development of the external nose and the melon, and nasal mucosa. Magnetic resonance imaging (MRI) and anatomical sections were correlated with anatomical sections.
View Article and Find Full Text PDFAnimals (Basel)
December 2019
Our objective was to analyze the main anatomical structures of the dolphin head during its developmental stages. Most dolphin studies use only one fetal specimen due to the difficulty in obtaining these materials. Magnetic resonance imaging (MRI) and computed tomography (CT) of two fetuses (younger and older) and a perinatal specimen cadaver of striped dolphins were scanned.
View Article and Find Full Text PDFBackground: In this research, using computed tomography (CT) and magnetic resonance imaging (MRI), we provide a thorough description of the standard appearance of a right tarsal joint in a Bengal tiger (Panthera tigris). CT scans were performed using a bone and soft tissue window setting, and three-dimensional surface reconstructed CT images were obtained. The MRI protocol was based on the use of Spin-echo (SE) T1-weighted and Gradient-echo (GE) STIR T2-weighted pulse sequences.
View Article and Find Full Text PDF