Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity.
View Article and Find Full Text PDFBrain-computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This paper aims to present and compare the accuracy and robustness of an EEG system employing one or two channels.
View Article and Find Full Text PDFUsing implicit responses to determine consumers' response to different stimuli is becoming a popular approach, but research is still needed to understand the outputs of the different technologies used to collect data. During the present research, electroencephalography (EEG) responses and self-reported liking and emotions were collected on different stimuli (odor, taste, flavor samples) to better understand sweetness perception. Artificial intelligence analytics were used to classify the implicit responses, identifying decision trees to discriminate the stimuli by activated sensory system (odor/taste/flavor) and by nature of the stimuli ('sweet' vs.
View Article and Find Full Text PDFHuman-Machine Interfaces (HMI) allow users to interact with different devices such as computers or home elements. A key part in HMI is the design of simple non-invasive interfaces to capture the signals associated with the user's intentions. In this work, we have designed two different approaches based on Electroencephalography (EEG) and Electrooculography (EOG).
View Article and Find Full Text PDFIn this work, we develop open source hardware and software for eye state classification and integrate it with a protocol for the Internet of Things (IoT). We design and build the hardware using a reduced number of components and with a very low-cost. Moreover, we propose a method for the detection of open eyes (oE) and closed eyes (cE) states based on computing a power ratio between different frequency bands of the acquired signal.
View Article and Find Full Text PDF