Publications by authors named "Francisco Jose Hernandez-Fernandez"

In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer inclusion membranes or ionogels for proton exchange membrane fuel cells (PEMFCs) has recently appeared.

View Article and Find Full Text PDF

In this work, poly(vinyl chloride)-based polymeric ionic liquid inclusion membranes were used in the selective separation of Fe(III), Zn(II), Cd(II), and Cu(II) from hydrochloride aqueous solutions. The ionic liquids under study were 1-octyl-3-methylimidazolium hexafluorophosphate, [omim][PF] and methyl trioctyl ammonium chloride, [MTOA][Cl]. For this purpose, stability studies of different IL/base polymer compositions against aqueous phases were carried out.

View Article and Find Full Text PDF

New lipase B derivatives with higher activity than the free enzyme were obtained by occlusion in an organogel of an ionic liquid (ionogel) based on the ionic liquid [Omim][PF] and polyvinyl chloride. The inclusion of glutaraldehyde as a crosslinker improved the properties of the ionogel, allowing the enzymatic derivative to reach 5-fold higher activity than the free enzyme and also allowing it to be reused at 70 °C. The new methodology allows enzymatic derivatives to be designed by changing the ionic liquid, thus providing a suitable microenvironment for the enzyme.

View Article and Find Full Text PDF

A novel concept of membrane bioreactor based on polymeric ionic liquids laccase membrane has been implemented in batch process for decolorization of the anthraquinonic dye Remazol Brillant Blue R (RBBR). New laccase immobilization strategy has been optimized by casting the enzyme into a polymeric inclusion membrane (PIM) using ionic liquids (ILs) and polyvinyl chloride (PVC) leading to laccase polymeric IL membrane (PILM). Four different ILs (1-octyl-3-metylimidazolium bis(trifluoromethylsulfonyl)imide, [OMIM][NTF]; cholinium bis(trifluoromethylsulfonyl)imide, [Ch ol][NTF]; cholinium dihydrogenphosphate, [Chol][HPO] and hydroxyethylammonium formate, [HEA][Fo]) have been screened and mixed to constitute the active phase of the support of PIM.

View Article and Find Full Text PDF