High energy consumption in the nervous system requires a continuous supply of O. This role is assisted by proteins from the globin super-family in the nerve cells of invertebrates, where 'nerve hemoglobins' (nHbs) are mainly present at mM concentrations and exhibit oxygen affinities comparable to those of vertebrate myoglobins. To gain insight into the structural bases of this function, we report the crystal structure of nHb from the Atlantic surf clam Spisula solidissima (SsHb), previously suggested to display a bis-histidyl hexa-coordinated heme in the deoxy state, high O affinity, and ligand binding cooperativity when assayed in situ.
View Article and Find Full Text PDFOne of the pathological hallmarks of Alzheimer's disease (AD) is the formation of amyloid-β plaques. Since acetylcholinesterase (AChE) promotes the formation of such plaques, the inhibition of this enzyme could slow down the progression of amyloid-β aggregation, hence being complementary to the palliative treatment of cholinergic decline. Antiaggregation assays performed for apigenin and quercetin, which are polyphenolic compounds that exhibit inhibitory properties against the formation of amyloid plaques, reveal distinct inhibitory effects of these compounds on Aβ40 aggregation in the presence and absence of AChE.
View Article and Find Full Text PDFEndothelial adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in the regulation of vascular tone through stimulating nitric oxide (NO) release in endothelial cells. Since obesity leads to endothelial dysfunction and AMPK dysregulation, AMPK activation might be an important strategy to restore vascular function in cardiometabolic alterations. Here, we report the identification of a novel AMPK modulator, the indolic derivative IND6, which shows affinity for AMPKα1β1γ1, the primary AMPK isoform in human EA.
View Article and Find Full Text PDFThe interaction between drugs and transport proteins, such as albumins, is a key factor in drug bioavailability. One of the techniques commonly used for the evaluation of the drug-protein complex formation is fluorescence. This work studies the interaction of human serum albumin (HSA) with four non-steroidal anti-inflammatory drugs (NSAIDs)-ibuprofen, flurbiprofen, naproxen, and diflunisal-by monitoring the fluorescence quenching when the drug-albumin complex is formed.
View Article and Find Full Text PDFHere we highlight a sound and unique work reported by Chen and co-workers entitled "HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes" (Xiao et al., Nat. Chem.
View Article and Find Full Text PDFDiarylpyrimidine derivatives (DAPYs) exhibit robust anti-HIV-1 potency, although they have been compromised by E138K variant and severe side-effects and been suffering from poor water solubility. In the present work, hydrophilic morpholine or methylsulfonyl and sulfamide-substituted piperazine/piperidines were introduced into the right wing of DAPYs targeting the solvent-exposed tolerant region I. The anti-HIV-1 activities of 11c (EC = 0.
View Article and Find Full Text PDFTo address drug resistance to HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), a series of novel diarylpyrimidine (DAPY) derivatives targeting "tolerant region I" and "tolerant region II" of the NNRTIs binding pocket (NNIBP) were designed utilizing a structure-guided scaffold-hopping strategy. The dihydrofuro[3,4- d]pyrimidine derivatives 13c2 and 13c4 proved to be exceptionally potent against a wide range of HIV-1 strains carrying single NNRTI-resistant mutations (EC = 0.9-8.
View Article and Find Full Text PDFAim: Simultaneous modulation of several key targets of the pathological network of Alzheimer's disease (AD) is being increasingly pursued as a promising option to fill the critical gap of efficacious drugs against this condition.
Materials & Methods: A short series of compounds purported to hit multiple targets of relevance in AD has been designed, on the basis of their distinct basicities estimated from high-level quantum mechanical computations, synthesized, and subjected to assays of inhibition of cholinesterases, BACE-1, and Aβ42 and tau aggregation, of antioxidant activity, and of brain permeation.
Results: Using, as a template, a lead rhein-huprine hybrid with an interesting multitarget profile, we have developed second-generation compounds, designed by the modification of the huprine aromatic ring.
Aim: Since neuroinflammation is partially mediated by cAMP levels and PDE10A enzyme is able to regulate these levels being highly expressed in striatum, its inhibitors emerged as useful drugs to mitigate this inflammatory process and hence the neuronal death associated with Parkinson's disease (PD). Methodology & results: To study the utility of PDE10A as a pharmacological target for PD, in this work we propose the search and development of new PDE10A inhibitors that could be useful as pharmacological tools in models of the disease and presumably as potential drug candidates. By using different medicinal chemistry approaches we have discovered imidazole-like PDE10A inhibitors and showed their neuroprotective actions.
View Article and Find Full Text PDFUnlabelled: A unique defense mechanisms by which Mycobacterium tuberculosis protects itself from nitrosative stress is based on the O2 -dependent NO-dioxygenase (NOD) activity of truncated hemoglobin 2/2HbN (Mt2/2HbN). The NOD activity largely depends on the efficiency of ligand migration to the heme cavity through a two-tunnel (long and short) system; recently, it was also correlated with the presence at the Mt2/2HbN N-terminus of a short pre-A region, not conserved in most 2/2HbNs, whose deletion results in a drastic reduction of NO scavenging. In the present study, we report the crystal structure of Mt2/2HbN-ΔpreA, lacking the pre-A region, at a resolution of 1.
View Article and Find Full Text PDFTwo domino Diels-Alder adducts were obtained from 3,7-bis(cyclopenta-2,4-dien-1-ylidene)-cis-bicyclo[3.3.0]octane and dimethyl acetylenedicarboxylate or N-methylmaleimide under microwave irradiation.
View Article and Find Full Text PDFNonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O(2) , we were able to collect O(2) -binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O(2) noncooperatively with a p50 of 0.
View Article and Find Full Text PDFThe acetylcholinesterase (AChE) inhibitory activity of a series of 13-amido derivatives of huprine Y, designed to enlarge the occupancy of the catalytic binding site by mimicking the piridone moiety present in (-)-huperzine A, has been assessed. Although both 13-formamido and 13-methanesulfonamido derivatives are more potent human AChE inhibitors than tacrine and (-)-huperzine A, none of them equals the potency of huprine Y. Molecular modeling studies show that the two derivatives effectively trigger the Gly117-Gly118 conformational flip induced upon binding of (-)-huperzine A, leading to a similar pattern of interactions as that formed by the pyridone amido group of (-)-huperzine A.
View Article and Find Full Text PDFWe investigate the changes in the solvation properties of the natural nucleic acid bases due to the formation of the canonical Watson-Crick hydrogen-bonded complexes. To this end, the changes in the free energy of solvation of the bases induced upon hydrogen-bonded dimerization are analyzed by means of the hydrophobic similarity index, which relies on the atomic contributions to the free energy of solvation determined by the partitioning method implemented in the framework of the MST continuum model. Such an index is also used to examine the hydrophobic similarity between the canonical nucleic acid bases and a series of highly apolar analogues, which have been designed as potential candidates to expand the genetic alphabet.
View Article and Find Full Text PDF