We consider two different time fractional telegrapher's equations under stochastic resetting. Using the integral decomposition method, we found the probability density functions and the mean squared displacements. In the long-time limit, the system approaches non-equilibrium stationary states, while the mean squared displacement saturates due to the resetting mechanism.
View Article and Find Full Text PDFA model for anomalous transport of tracer particles diffusing in complex media in two dimensions is proposed. The model takes into account the characteristics of persistent motion that an active bath transfers to the tracer; thus, the model proposed here extends active Brownian motion, for which the stochastic dynamics of the orientation of the propelling force is described by scaled Brownian motion (sBm), identified by time-dependent diffusivity of the form D_{β}∝t^{β-1}, β>0. If β≠1, sBm is highly nonstationary and suitable to describe such nonequilibrium dynamics induced by complex media.
View Article and Find Full Text PDFWe analyze fractional Brownian motion and scaled Brownian motion on the two-dimensional sphere S^{2}. We find that the intrinsic long-time correlations that characterize fractional Brownian motion collude with the specific dynamics (navigation strategies) carried out on the surface giving rise to rich transport properties. We focus our study on two classes of navigation strategies: one induced by a specific set of coordinates chosen for S^{2} (we have chosen the spherical ones in the present analysis), for which we find that contrary to what occurs in the absence of such long-time correlations, nonequilibrium stationary distributions are attained.
View Article and Find Full Text PDFWe analyze the statistical physics of self-propelled particles from a general theoretical framework that properly describes the most salient characteristic of active motion, persistence, in arbitrary spatial dimensions. Such a framework allows the development of a Smoluchowski-like equation for the probability density of finding a particle at a given position and time, without assuming an explicit orientational dynamics of the self-propelling velocity as Langevin-like equation-based models do. Also, the Brownian motion due to thermal fluctuations and the active one due to a general intrinsic persistent motion of the particle are taken into consideration on an equal footing.
View Article and Find Full Text PDFCorrection for 'Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam' by Raúl Josué Hernández et al., Soft Matter, 2020, 16, 7704-7714, DOI: .
View Article and Find Full Text PDFWe demonstrate the emergence of circular collective motion in a system of spherical light-propelled Brownian particles. Light-propulsion occurs as consequence of the coupling between the chirality of polymeric particles - left (L)- or right (R)-type - and the circularly-polarized light that irradiates them. Irradiation with light that has the same helicity as the particle material leads to a circular cooperative vortical motion between the chiral Brownian particles.
View Article and Find Full Text PDFThe diffusion in two dimensions of noninteracting active particles that follow an arbitrary motility pattern is considered for analysis. A Fokker-Planck-like equation is generalized to take into account an arbitrary distribution of scattered angles of the swimming direction, which encompasses the pattern of active motion of particles that move at constant speed. An exact analytical expression for the marginal probability density of finding a particle on a given position at a given instant, independently of its direction of motion, is provided, and a connection with a generalized diffusion equation is unveiled.
View Article and Find Full Text PDFWe investigate a one-dimensional model of active motion, which takes into account the effects of persistent self-propulsion through a memory function in a dissipative-like term of the generalized Langevin equation for particle swimming velocity. The proposed model is a generalization of the active Ornstein-Uhlenbeck model introduced by G. Szamel [Phys.
View Article and Find Full Text PDFWe present an analysis of the stationary distributions of run-and-tumble particles trapped in external potentials in terms of a thermophoretic potential that emerges when trapped active motion is mapped to trapped passive Brownian motion in a fictitious inhomogeneous thermal bath. We elaborate on the meaning of the non-Boltzmann-Gibbs stationary distributions that emerge as a consequence of the persistent motion of active particles. These stationary distributions are interpreted as a class of distributions in nonequilibrium statistical mechanics known as superstatistics.
View Article and Find Full Text PDFA theoretical analysis of active motion on curved surfaces is presented in terms of a generalization of the telegrapher equation. Such a generalized equation is explicitly derived as the polar approximation of the hierarchy of equations obtained from the corresponding Fokker-Planck equation of active particles diffusing on curved surfaces. The general solution to the generalized telegrapher equation is given for a pulse with vanishing current as initial data.
View Article and Find Full Text PDFThe diffusion of chiral active Brownian particles in three-dimensional space is studied analytically, by consideration of the corresponding Fokker-Planck equation for the probability density of finding a particle at position x and moving along the direction v[over ̂] at time t, and numerically, by the use of Langevin dynamics simulations. The analysis is focused on the marginal probability density of finding a particle at a given location and at a given time (independently of its direction of motion), which is found from an infinite hierarchy of differential-recurrence relations for the coefficients that appear in the multipole expansion of the probability distribution, which contains the whole kinematic information. This approach allows the explicit calculation of the time dependence of the mean-squared displacement and the time dependence of the kurtosis of the marginal probability distribution, quantities from which the effective diffusion coefficient and the "shape" of the positions distribution are examined.
View Article and Find Full Text PDFBy studying a system of Brownian particles that interact among themselves only through a local velocity-alignment force that does not affect their speed, we show that self-propulsion is not a necessary feature for the flocking transition to take place as long as underdamped particle dynamics can be guaranteed. Moreover, the system transits from stationary phases close to thermal equilibrium, with no net flux of particles, to far-from-equilibrium ones exhibiting collective motion, phase coexistence, long-range order, and giant number fluctuations, features typically associated with ordered phases of models where self-propelled particles with overdamped dynamics are considered.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2015
We study the free diffusion in two dimensions of active Brownian swimmers subject to passive fluctuations on the translational motion and to active fluctuations on the rotational one. The Smoluchowski equation is derived from a Langevin-like model of active swimmers and analytically solved in the long-time regime for arbitrary values of the Péclet number; this allows us to analyze the out-of-equilibrium evolution of the positions distribution of active particles at all time regimes. Explicit expressions for the mean-square displacement and for the kurtosis of the probability distribution function are presented and the effects of persistence discussed.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2014
Starting from a Langevin description of active particles that move with constant speed in infinite two-dimensional space and its corresponding Fokker-Planck equation, we develop a systematic method that allows us to obtain the coarse-grained probability density of finding a particle at a given location and at a given time in arbitrary short-time regimes. By going beyond the diffusive limit, we derive a generalization of the telegrapher equation. Such generalization preserves the hyperbolic structure of the equation and incorporates memory effects in the diffusive term.
View Article and Find Full Text PDF