Publications by authors named "Francisco J Roman-Rodriguez"

Hematopoietic stem cell gene therapy (HSCGT) is a promising therapeutic strategy for the treatment of neurodegenerative, metabolic disorders. The approach involves the introduction of a missing gene into patients' own stem cells via lentiviral-mediated transduction (TD). Once transplanted back into a fully conditioned patient, these genetically modified HSCs can repopulate the blood system and produce the functional protein, previously absent or non-functional in the patient, which can then cross-correct other affected cells in somatic organs and the central nervous system.

View Article and Find Full Text PDF

Difficulties in the collection of hematopoietic stem and progenitor cells (HSPCs) from Fanconi anemia (FA) patients have limited the gene therapy in this disease. We have investigated (ClinicalTrials.gov, NCT02931071) the safety and efficacy of filgrastim and plerixafor for mobilization of HSPCs and collection by leukapheresis in FA patients.

View Article and Find Full Text PDF

Fanconi anemia (FA) patients have an exacerbated risk of head and neck squamous cell carcinoma (HNSCC). Treatment is challenging as FA patients display enhanced toxicity to standard treatments, including radio/chemotherapy. Therefore, better therapies as well as new disease models are urgently needed.

View Article and Find Full Text PDF

Non-homologous end-joining (NHEJ) is the preferred mechanism used by hematopoietic stem cells (HSCs) to repair double-stranded DNA breaks and is particularly increased in cells deficient in the Fanconi anemia (FA) pathway. Here, we show feasible correction of compromised functional phenotypes in hematopoietic cells from multiple FA complementation groups, including FA-A, FA-C, FA-D1, and FA-D2. NHEJ-mediated repair of targeted CRISPR-Cas9-induced DNA breaks generated compensatory insertions and deletions that restore the coding frame of the mutated gene.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a DNA repair syndrome generated by mutations in any of the 22 FA genes discovered to date. Mutations in FANCA account for more than 60% of FA cases worldwide. Clinically, FA is associated with congenital abnormalities and cancer predisposition.

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC)-based gene therapy trials are now moving toward the use of lentiviral vectors (LVs) with success. However, one challenge in the field remains: efficient transduction of HSCs without compromising their stem cell potential. Here we showed that measles virus glycoprotein-displaying LVs (hemagglutinin and fusion protein LVs [H/F-LVs]) were capable of transducing 100% of early-acting cytokine-stimulated human CD34 (hCD34) progenitor cells upon a single application.

View Article and Find Full Text PDF

Gene targeting constitutes a new step in the development of gene therapy for inherited diseases. Although previous studies have shown the feasibility of editing fibroblasts from Fanconi anemia (FA) patients, here we aimed at conducting therapeutic gene editing in clinically relevant cells, such as hematopoietic stem cells (HSCs). In our first experiments, we showed that zinc finger nuclease (ZFN)-mediated insertion of a non-therapeutic EGFP-reporter donor in the "safe harbor" locus of FA-A lymphoblastic cell lines (LCLs), indicating that FANCA is not essential for the editing of human cells.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic syndrome characterized by progressive marrow failure. Gene therapy by infusion of FA-corrected autologous hematopoietic stem cells (HSCs) may offer a potential cure since it is a monogenetic disease with mutations in the FANC genes, coding for DNA repair enzymes [1]. However, the collection of hCD34+-cells in FA patients implies particular challenges because of the reduced numbers of progenitor cells present in their bone marrow (BM) [2] or mobilized peripheral blood [3-5].

View Article and Find Full Text PDF
Article Synopsis
  • Hirschsprung disease is a condition caused by issues with cell development in the gut during embryonic growth, and researchers aimed to identify new genes that contribute to this disease.
  • The study compared gene expression patterns in enteric precursors from healthy individuals and those with Hirschsprung disease, focusing particularly on the gene DNMT3B, which is involved in DNA methylation during development.
  • Findings indicated that DNMT3B may play a critical role in the development of the enteric nervous system, with mutations in this gene potentially leading to more severe forms of Hirschsprung disease.
View Article and Find Full Text PDF

Shah-Waardenburg syndrome or Waardenburg syndrome type 4 (WS4) is a neurocristopathy characterized by the association of deafness, depigmentation and Hirschsprung disease. Three disease-causing genes have been identified so far for WS4: EDNRB, EDN3, and SOX10. SOX10 mutations, found in 45-55% of WS4 patients, are inherited in autosomal dominant way.

View Article and Find Full Text PDF