Publications by authors named "Francisco J Ortega-Delgado"

Background: Protein expression studies based on the two major intra-abdominal human fat depots, the subcutaneous and the omental fat, can shed light into the mechanisms involved in obesity and its co-morbidities. Here we address, for the first time, the identification and validation of reference proteins for data standardization, which are essential for accurate comparison of protein levels in expression studies based on fat from obese and non-obese individuals.

Methodology And Findings: To uncover adipose tissue proteins equally expressed either in omental and subcutaneous fat depots (study 1) or in omental fat from non-obese and obese individuals (study 2), we have reanalyzed our previously published data based on two-dimensional fluorescence difference gel electrophoresis.

View Article and Find Full Text PDF

Obesity is recognized as an epidemic health problem worldwide. In humans, the accumulation of omental rather than subcutaneous fat appears to be tightly linked to insulin resistance, type 2 diabetes and cardiovascular disease. Differences in gene expression profiles in the adipose tissue comparing non-obese and obese subjects have been well documented.

View Article and Find Full Text PDF

Obesity is increasing exponentially in developed countries and constitutes a public health problem by enhancing the risk for metabolic disorder and cardiovascular disease. Differences in gene expression profiles and in metabolic and biochemical properties have been well-described between omental and subcutaneous adipose tissue in humans. Because omental adipose tissue has been strongly associated with the development of insulin resistance, type 2 diabetes and cardiovascular disease, we searched for proteins differentially expressed in these two fat depots using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS).

View Article and Find Full Text PDF

Recent experimental evidences begin to support the notion that the proto-oncogene HER2 (erbB-2) might unexpectedly function to modulate the adipogenic conversion of preadipocytes. Two opposing scenarios have been proposed, however, to explain the influence of HER2 on adipocyte differentiation. In one hand, down-modulation of HER2 expression and pharmacological reduction of HER2 activity have been related to enhanced adipocyte differentiation.

View Article and Find Full Text PDF