Publications by authors named "Francisco J Lucio-Cazana"

Background: Apoptotic bodies play an important role in the cellular communication as a consequence of the great variety of biomolecules they harbor. There is evidence that 1st generation apoptotic bodies from HK-2 cells induced by cisplatin or UV light trigger apoptosis in naïve HK-2 cells whereas 2nd generation apoptotic bodies activate cell proliferation showing an opposite effect. Thus, the development of new analytical strategies to quantify the changes in the involved metabolites is imperative to shed light on the biological mechanisms which trigger apoptosis and cell proliferation.

View Article and Find Full Text PDF

The probability of acute kidney injury (AKI) is higher in septic diabetic patients, which is associated with, among other factors, proximal tubular cell (PTC) injury induced by the hypoxic/hyperglycemic/inflammatory microenvironment that surrounds PTCs in these patients. Here, we exposed human PTCs (HK-2 cells) to 1% O/25 mM glucose/inflammatory cytokines with the aim of studying the role of prostaglandin uptake transporter (PGT) and dipeptidyl peptidase-4 (DPP-4, a target of anti-hyperglycemic agents) as pharmacological targets to prevent AKI in septic diabetic patients. Our model reproduced two pathologically relevant mechanisms: (i) pro-inflammatory PTC activation, as demonstrated by the increased secretion of chemokines IL-8 and MCP-1 and the enhanced expression of DPP-4, intercellular leukocyte adhesion molecule-1 and cyclo-oxygenase-2 (COX-2), the latter resulting in a PGT-dependent increase in intracellular prostaglandin E (iPGE); and (ii) epithelial monolayer injury and the consequent disturbance of paracellular permeability, which was related to cell detachment from collagen IV and the alteration of the cell cytoskeleton.

View Article and Find Full Text PDF

Among the extracellular vesicles, apoptotic bodies (ABs) are only formed during the apoptosis and perform a relevant role in the pathogenesis of different diseases. Recently, it has been demonstrated that ABs from human renal proximal tubular HK-2 cells, either induced by cisplatin or by UV light, can lead to further apoptotic death in naïve HK-2 cells. Thus, the aim of this work was to carry out a non-targeted metabolomic approach to study if the apoptotic stimulus (cisplatin or UV light) affects in a different way the metabolites involved in the propagation of apoptosis.

View Article and Find Full Text PDF

Oxygen deficiency in cells, tissues, and organs can not only prevent the proper development of biological functions but it can also lead to several diseases and disorders. In this sense, the kidney deserves special attention since hypoxia can be considered an important factor in the pathophysiology of both acute kidney injury and chronic kidney disease. To provide better knowledge to unveil the molecular mechanisms involved, new studies are necessary.

View Article and Find Full Text PDF

Proximal tubular cells (PTC) are particularly vulnerable to hypoxia-induced apoptosis, a relevant factor for kidney disease. We hypothesized here that PTC death under hypoxia is mediated by cyclo-oxygenase (COX-2)-dependent production of prostaglandin E (PGE), which was confirmed in human proximal tubular HK-2 cells because hypoxia (1% O)-induced apoptosis (i) was prevented by a COX-2 inhibitor and by antagonists of prostaglandin (EP) receptors and (ii) was associated to an increase in intracellular PGE (iPGE) due to hypoxia-inducible factor-1α-dependent transcriptional up-regulation of COX-2. Apoptosis was also prevented by inhibitors of the prostaglandin uptake transporter PGT, which indicated that iPGE contributes to hypoxia-induced apoptosis (on the contrary, hypoxia/reoxygenation-induced PTC death was exclusively due to extracellular PGE).

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is the leading cause of chronic kidney disease. Although hyperglycaemia has been determined as the most important risk factor, hypoxia also plays a relevant role in the development of this disease. In this work, a comprehensive metabolomic study of the response of HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells, to hyperglycemic, hypoxic diabetic-like milieu has been performed.

View Article and Find Full Text PDF

During diabetes, renal proximal tubular cells (PTC) are exposed to a combination of high glucose and hypoxic conditions, which plays a relevant role in the development of diabetic kidney disease (DKD). In this work, a time-series proteomic study was performed to analyse the effect of a diabetic-like microenvironment induced changes on HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells. Cells simultaneously exposed to high glucose (25 mM) and hypoxia (1% O2) were compared to cells in control conditions for up to 48 h.

View Article and Find Full Text PDF

Cisplatin's toxicity in renal tubular epithelial cells limits the therapeutic efficacy of this antineoplastic drug. In cultured human proximal tubular HK-2 cells (PTC) a prostaglandin uptake transporter (PGT)-dependent increase in intracellular prostaglandin E (iPGE) mediates cisplatin's toxicity (i.e.

View Article and Find Full Text PDF

Diabetic nephropathy is characterized by the chronic loss of kidney function due to high glucose renal levels. HK-2 proximal tubular cells are good candidates to study this disease. The aim of this work was to study an in vitro model of high glucose-induced metabolic alterations in HK-2 cells to contribute to the pathogenesis of this diabetic complication.

View Article and Find Full Text PDF

Renal hypoxia and loss of proximal tubular cells (PTC) are relevant in diabetic nephropathy. Hypoxia inhibits hypoxia-inducible factor-1α (HIF-1α) degradation, which leads to cellular adaptive responses through HIF-1-dependent activation of gene hypoxia-responsive elements (HRE). However, the diabetic microenvironment represses the HIF-1/HRE response in PTC.

View Article and Find Full Text PDF

The therapeutic efficacy of the antineoplastic drug cisplatin is limited by its nephrotoxicity, which affects particularly to proximal tubular cells (PTC). Cisplatin-induced cytotoxicity appears to be multifactorial and involves inflammation, oxidative stress as well as apoptosis. We have recently shown that the cyclo-oxygenase-2 (COX-2)/intracellular prostaglandin E (iPGE)/EP receptor pathway mediates the apoptotic effect of cisplatin on human proximal tubular HK-2 cells.

View Article and Find Full Text PDF

Diabetes mellitus is a major health concern nowadays. It is estimated that 40% of diabetics are affected by diabetic nephropathy, one of the complications derived from high glucose blood levels which can lead to chronic loss of kidney function. It is now clear that the renal proximal tubule plays a critical role in the progression of diabetic nephropathy but research focused on studying the molecular mechanisms involved is still needed.

View Article and Find Full Text PDF

Cyclooxygenase (COX)-derived prostaglandin E2 (PGE ) affects many mechanisms that have been shown to play roles in carcinogenesis. Recently, we found that, in androgen-independent prostate cancer PC3 cells, PGE acts through an intracrine mechanism by which its uptake by the prostaglandin transporter (PGT) results in increased intracellular PGE (iPGE ), leading to enhanced cell proliferation, migration, invasion, angiogenesis, and loss of cell adhesion to collagen I. These iPGE -mediated effects were dependent on hypoxia-inducible factor 1-α (HIF-1α), whose expression increased upon epidermal growth factor receptor (EGFR) transactivation by a subset of intracellular PGE receptors.

View Article and Find Full Text PDF

Prostaglandin E (PGE ) increases cell proliferation and stimulates migratory and angiogenic abilities in prostate cancer cells. However, the effects of PGE on non-transformed prostate epithelial cells are unknown, despite the fact that PGE overproduction has been found in benign hyperplastic prostates. In the present work we studied the effects of PGE in immortalized, non-malignant prostate epithelial RWPE-1 cells and found that PGE increased cell proliferation, cell migration, and production of vascular endothelial growth factor-A, and activated in vitro angiogenesis.

View Article and Find Full Text PDF

Objective: The growing use of purchase online via Internet retailers favours the access to potentially toxic natural products. It also contributes to the quick dissemination of the claims made by the retailers on efficacy and safety, these claims being not always based upon reliable information. Here, we have conducted an online search to find Spanish-language retail websites for Chinese herbal medicine and we have analysed them for the quality of product information and the potential health risks.

View Article and Find Full Text PDF

Nephrotoxicity, particularly in the proximal tubule, limits the therapeutic efficacy of the antineoplastic drug cisplatin. The signaling mechanisms appear to be multifactorial, involving inflammation, oxidative stress, and caspase. Here we studied the role of intracellular prostaglandin E2 (iPGE2) in cisplatin's cytotoxicity in human proximal tubular HK-2 cells.

View Article and Find Full Text PDF

Background: Directive 2004/24/EC, which came into force in 2011, created new regulatory requirements for traditional herbal medicines (THM). This study compared the Spanish THM registry before and after the Directive came fully into force in 2011.

Methods: We consulted the herbal medicinal plant and drug catalogues (General Council of the Official Colleges of Pharmacists), the website of the European Medicines Agency (EMA), and retail web sites.

View Article and Find Full Text PDF

The pharmacological modulation of hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-regulated vascular endothelial growth factor-A (VEGF-A) in the kidney has therapeutic interest. Although it is assumed that prostaglandin E(2) (PGE(2)) exerts its biological effects from the extracellular medium through activation of EP receptors located at the cell membrane, we have shown in human renal proximal tubular HK-2 cells (and other cell lines) that intracellular PGE(2) regulates the expression of HIF-1α expression and the production of VEGF-A. Here, we have found--through experiments involving EP receptors agonists, EP receptor gene silencing and inhibition of the prostaglandin uptake transporter--that these biological effects of PGE(2) are mediated by intracellular EP(2) receptors.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been shown to play a role in prostate cancer. In PGE2-treated LNCaP cells, up-regulation of HIF-1α requires the internalization of PGE2, which is in sharp contrast with the generally accepted view that PGE2 acts through EP receptors located at the cell membrane. Here we aimed to study in androgen-independent PC3 cells the role of intracellular PGE2 in several events linked to prostate cancer progression.

View Article and Find Full Text PDF

The pharmacological modulation of putative renoprotective factors hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-regulated vascular endothelial growth factor-A (VEGF-A) in the kidney has therapeutic interest. In human renal proximal tubular HK2 cells, prostaglandin E2 (PGE2) up-regulates HIF-1α and VEGF-A through epidermal growth factor receptor (EGFR)-dependent up-regulation of retinoic acid receptor-β (RARβ). Here we studied the role of mitogen-activated protein kinases (MAPKs) ERK1/2 and p38 and their target kinase, mitogen- and stress activated kinase-1 (MSK1), in the signaling cascade.

View Article and Find Full Text PDF

Microparticles are produced by vesiculation of the cell plasma membrane and serve as vectors of cell-to-cell communication. Co-culture experiments have shown that hypoxia-inducible factor-α (HIF-α)-regulated-genes are up-regulated in human renal proximal tubular HK-2 cells by endothelial cell factors which might be transported inside endothelial microparticles (EMP). Here we aimed to study in HK-2 cells the effect of EMP, produced by activated endothelial cells, on HIF-α and HIF-α-regulated vascular endothelial growth factor-A (VEGF-A).

View Article and Find Full Text PDF

The pharmacological modulation of renoprotective factor vascular endothelial growth factor-A (VEGF-A) in the proximal tubule has therapeutic interest. In human proximal tubular HK-2 cells, treatment with all-trans retinoic acid or prostaglandin E2 (PGE2) triggers the production of VEGF-A. The pathway involves an initial increase in intracellular PGE2, followed by activation of EP receptors (PGE2 receptors, most likely an intracellular subset) and increase in retinoic acid receptor-β (RARβ) expression.

View Article and Find Full Text PDF

We have previously found in human renal proximal tubular HK-2 cells that hypoxia- and all-trans retinoic acid-induced hypoxia-inducible factor-1α up-regulation is accompanied by retinoic acid receptor-β up-regulation. Here we first investigated whether hypoxia-inducible factor-1α expression is dependent on retinoic acid receptor-β and our results confirmed it since (i) hypoxia-inducible factor-1α-inducing agents hypoxia, hypoxia-mimetic agent desferrioxamine, all-trans retinoic acid and interleukin-1β increased retinoic acid receptor-β expression, (ii) hypoxia-inducible factor-1α up-regulation was prevented by retinoic acid receptor-β antagonist LE-135 or siRNA retinoic acid receptor-β and (iii) there was direct binding of retinoic acid receptor-β to the retinoic acid response element in hypoxia-inducible factor-1α promoter upon treatment with all-trans retinoic acid and 16,16-dimethyl-prostaglandin E(2). Since intracellular prostaglandin E(2) mediates hypoxia-inducible factor-1α up-regulation in normoxia in HK-2 cells, we next investigated and confirmed, its role in the up-regulation of retinoic acid receptor-β in normoxia by hypoxia-inducible factor-1α-inducing agents all-trans retinoic acid, interleukin-1β and 16,16-dimethyl-prostaglandin E(2) by inhibiting cyclooxygenases, prostaglandin influx transporter or EP receptors.

View Article and Find Full Text PDF