Publications by authors named "Francisco J Juarez-Delgado"

Dengue virus infection (DENV-2) is transmitted by infected mosquitoes the skin, where many dermal and epidermal cells are potentially susceptible to infection. Most of the cells in an area of infection will establish an antiviral microenvironment to control viral replication. Although cumulative studies report permissive DENV-2 infection in dendritic cells, keratinocytes, and fibroblasts, among other cells also infected, little information is available regarding cell-to-cell crosstalk and the effect of this on the outcome of the infection.

View Article and Find Full Text PDF

When dengue virus (DENV)-infected mosquitoes use their proboscis to probe into human skin during blood feeding, both saliva and virus are released. During this process, cells from the epidermis and dermis layers of the skin, along with small blood vessels, may get exposed to or infected with DENV. In these microenvironments of the skin, the presence of DENV initiates a complex interplay among the DENV-infected and non-infected neighboring cells at the initial bite site.

View Article and Find Full Text PDF

Background: When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times ("probing") before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells.

View Article and Find Full Text PDF