Publications by authors named "Francisco J Gonzalez-Vila"

This work studies carbon (C) and hydrogen (H) isotope composition of plant biomass and soil organic matter (SOM) in an attempt to assess both, changes exerted by fire and possible inputs of charred materials to the soil after a wildfire. Isotope composition of bulk soil, soil particle size fractions and biomass of the dominant standing vegetation in the area (Quercus suber) from Doñana National Park (SW-Spain) were studied by isotope ratio mass spectrometry (IRMS). SOM C isotope composition indicates the occurrence of two SOM pools with different degree of alteration.

View Article and Find Full Text PDF

Sedimentary organic matter (OM) origin and molecular composition provide useful information to understand carbon cycling in coastal wetlands. Core sediments from threors' Contributionse transects along Ria Formosa lagoon intertidal zone were analysed using analytical pyrolysis (Py-GC/MS) to determine composition, distribution and origin of sedimentary OM. The distribution of alkyl compounds (alkanes, alkanoic acids and alkan-2-ones), polycyclic aromatic hydrocarbons (PAHs), lignin-derived methoxyphenols, linear alkylbenzenes (LABs), steranes and hopanes indicated OM inputs to the intertidal environment from natural-autochthonous and allochthonous-as well as anthropogenic.

View Article and Find Full Text PDF

Fire is one of the most important modulating factors of the environment and the forest inducing chemical and biological changes on the most reactive soil component, the soil organic matter (SOM). Assuming the complex composition of the SOM, we used an ultra-high resolution mass spectrometry analysis technique to assess the chemical composition and fire-induced alterations in soil particle size fractions (coarse and fine) from a sandy soil in a Mediterranean oak forest at Doñana National Park (Southwest Spain). Electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) showed that the coarse fraction of soils not affected by fires consisted mainly of polyphenolic compounds consistent with little-transformed SOM and fresh biomass, whereas the fine fraction was enriched in protein and lipid like homologues suggesting microbially reworked SOM.

View Article and Find Full Text PDF

After vegetation fires, incorporation of pyrogenic organic matter (PyOM) into soil organic matter (SOM) shifts its composition toward higher aromaticity and to an increase of N-heterocyclic constituents, formerly introduced as black nitrogen (BN). To investigate the medium-term impact of these shifts on the quality of SOM and its role as an important C sink, the A horizon from soils of the fire-prone Sierra de Aznalcóllar (Southern Spain) were sampled 4 weeks and 7 years after a severe fire. The solid-state C and N nuclear magnetic resonance (NMR) spectra of the samples obtained 4 weeks after the fire indicated quick incorporation of PyOM into SOM.

View Article and Find Full Text PDF

Wildfires are a recurrent disturbance in Mediterranean forests, triggered by high fuel load, high environmental temperature and low humidity. Although, human intervention is behind the initiation of most fire episodes, the situation is likely to worsen in the future due to the effects of climate change in the Mediterranean "hot-spot". Here we study chemical, physical and microbial characteristics of burnt soils from two well differentiated sites at Sierra de Cazorla, Segura and Las Villas Natural Park, Andalusia, (Spain) affected and unaffected by a wildfire, and followed their evolution for three years.

View Article and Find Full Text PDF

Soil water repellency (hydrophobicity) prevents water from wetting or infiltrating soils, triggering changes in the ecosystems. Fire may develop, enhance or destroy hydrophobicity in previously wettable or water-repellent soils. Soil water repellency is mostly influenced by the quality and quantity of soil organic matter, particularly the lipid fraction.

View Article and Find Full Text PDF

The variable extent to which environmental factors are involved in soil carbon storage is currently a subject of controversy. In fact, justifying why some soils accumulate more organic matter than others is not trivial. Some abiotic factors such as organo-mineral associations have classically been invoked as the main drivers for soil C stabilization.

View Article and Find Full Text PDF

Background: Pyrolysis-compound specific isotopic analysis (Py-CSIA: Py-GC-(FID)-C-IRMS) is a relatively novel technique that allows on-line quantification of stable isotope proportions in chromatographically separated products released by pyrolysis. Validation of the Py-CSIA technique is compulsory for molecular traceability in basic and applied research. In this work, commercial sucrose from C4 (sugarcane) and C3 (sugarbeet) photosystem plants and admixtures were studied using analytical pyrolysis (Py-GC/MS), bulk δ(13)C IRMS and δ(13)C Py-CSIA.

View Article and Find Full Text PDF

Flash pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS) was used to study the structural transformations of humic fractions formed as a result of composting processes of diverse organic materials (solid wastes of wineries, solid olive-mill wastes, domestic wastes, ovine manures plus straw, and mixtures of animal manures). Sodium hydroxide-extracted total humic-like extracts (THE; humic plus fulvic acids) from the composted and the initial noncomposted wastes and several reference humic and fulvic acids from soils were analyzed. These results were compared with results from previous studies using 13C-cross polarization magic angle spinning-nuclear magnetic resonance (NMR), UV-visible, and fluorescence emission spectroscopies.

View Article and Find Full Text PDF
Article Synopsis
  • * An in-depth analysis using techniques such as UV-visible spectroscopy, FTIR, and NMR revealed that the different HS fractions have distinct structural characteristics, with GHA containing larger nonpolar units, FA having smaller polar structures, and BHA featuring more aromatic and S-containing compounds.
  • * These structural differences among the HS fractions influence their solubility and interaction patterns in various pH and ionic strength conditions, highlighting that not just the quantity
View Article and Find Full Text PDF

The aim of this work is to explore the suitability of the complementary use of mass spectra and the corresponding statistical analysis (principal components-Pareto analysis (PCA) and discriminant analysis (DA)) of these spectra to differentiate diverse humic samples as a function of their structural and conformational features. To this end, the mass spectra of humic samples belonging to the main humic fraction types (gray humic acid, brown humic acid, and fulvic acid) were obtained by electrospray ionization mass spectrometry (ESI-MS). The results obtained showed that the application of PCA yielded a clear separation between blanks and humic samples.

View Article and Find Full Text PDF

Soil health refers to the biological, chemical, and physical features of soil that are essential to long-term, sustainable agricultural productivity with minimal environmental impact. Thus, soil health provides an overall picture of soil functionality. Although it cannot be measured directly, soil health can be inferred by measuring specific soil properties (e.

View Article and Find Full Text PDF

A quantitative laboratory assessment of the different C and N forms in soil humus fractions was carried out by incubation of a mineral substrate after the addition of (15)N-labeled compost. The experimental design included (i) preparation of the (15)N-labeled organic matter (city refuse compost, 640 g kg(-1) wheat straw and K(15)NO(3) composted for 80 days), (ii) a further 80 day incubation of a mixture of the labeled compost with a mineral soil (32 g kg(-1)), (iii) measurement of stable isotope ratios, and (iv) isolation and structural comparison by (13)C and (15)N cross-polarization, magic-angle spinning nuclear magnetic resonance (NMR) of different organic fractions, i.e.

View Article and Find Full Text PDF

The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil.

View Article and Find Full Text PDF