Publications by authors named "Francisco J De la Mata"

Acanthamoeba species are responsible for serious human infections, including Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). These pathogens have a simple life cycle consisting of an infective trophozoite stage and a resistant cyst stage, with cysts posing significant treatment challenges due to their resilience against harsh conditions and chemical agents. Current treatments for AK often involve combining diamines, such as propamidine, and biguanides, such as chlorhexidine (CLX), which exhibit limited efficacy and significant toxicity.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) are potentially applicable in drug/nucleic acid delivery systems. Low toxicity, high stability, and bioavailability are crucial for the therapeutic use of AuNPs and they are mainly determined by their interactions with proteins and lipids on their route to the target cells. In this work, we investigated the interaction of two pegylated gold nanoparticles, AuNP14a and AuNP14b, with human serum proteins albumin (HSA) and transferrin (Tf) as well as dimyristoyl-phosphatidylcholine (DMPC) liposomes, which can be a representative of biomembranes.

View Article and Find Full Text PDF

The use of dendrimers as nanovectors for nucleic acids or drugs requires the understanding of their interaction with biological membranes. This study investigates the impact of 1st generation polyphenolic carbosilane dendrimers on biological and model lipid membranes using several biophysical methods. While the increase in the z-average size of DMPC/DPPG liposomes correlated with the number of caffeic acid residues included in the dendrimer structure, dendrimers that contained polyethylene glycol chains generated lower zeta potential when interacting with a liposomal membrane.

View Article and Find Full Text PDF

Species of and genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets.

View Article and Find Full Text PDF

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells.

View Article and Find Full Text PDF

Dendritic hydrogels based on carbosilane crosslinkers are promising drug delivery systems, as their amphiphilic nature improves the compatibility with poorly water-soluble drugs. In this work, we explored the impact of the complementary polymer on the amphiphilic properties of the dendritic network. Different polymers were selected as precursors, from the highly lipophilic propylene glycol (PPG) to the hydrophilic polyethylene glycol (PEG), including amphiphilic Pluronics L31, L35 and L61.

View Article and Find Full Text PDF

Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate.

View Article and Find Full Text PDF

The use of dendrimers as drug and nucleic acid delivery systems requires knowledge of their interactions with objects on their way to the target. In the present work, we investigated the interaction of a new class of carbosilane dendrimers functionalized with polyphenolic and caffeic acid residues with human serum albumin, which is the most abundant blood protein. The addition of dendrimers to albumin solution decreased the zeta potential of albumin/dendrimer complexes as compared to free albumin, increased density of the fibrillary form of albumin, shifted fluorescence spectrum towards longer wavelengths, induced quenching of tryptophan fluorescence, and decreased ellipticity of circular dichroism resulting from a reduction in the albumin α-helix for random coil structural form.

View Article and Find Full Text PDF

Gene therapy presents an innovative approach to the treatment of previously incurable diseases. The advancement of research in the field of nanotechnology has the potential to overcome the current limitations and challenges of conventional therapy methods, and therefore to unlocking the full potential of dendrimers for use in the gene therapy of neurodegenerative disorders. The blood-brain barrier (BBB) poses a significant challenge when delivering therapeutic agents to the central nervous system.

View Article and Find Full Text PDF

The emergence of antibiotic resistance is a serious global health problem. There is an incessant demand for new antimicrobial drugs and materials that can address this global issue from different angles. Dendritic hydrogels have appeared as a promising strategy.

View Article and Find Full Text PDF
Article Synopsis
  • - Antimicrobial Resistance, worsened by microorganisms forming biofilms, presents a public health threat, prompting the exploration of new treatments like cationic dendritic systems (dendrimers and dendrons).
  • - The research tested six cationic carbosilane dendrimers and one dendron against multidrug-resistant bacteria and their biofilms, evaluating their effectiveness through various concentration measurements and assessing cytotoxicity on Hela cells.
  • - Results showed that certain dendrimers and the dendron had significant antibacterial activity against resistant bacteria in their planktonic state, but their effectiveness against biofilms was limited, highlighting their potential for topical use against infections.
View Article and Find Full Text PDF

Carbosilane metallodendrimers, based on the arene Ru(II) complex (CRD13) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. In vivo investigations proved that a local injection of CRD13 caused a reduction of tumour mass and was non-toxic.

View Article and Find Full Text PDF

One of the major limitations for the treatment of many diseases is an inability of drugs to cross the cell membrane barrier. Different kinds of carriers are being investigated to improve drug bioavailability. Among them, lipid or polymer-based systems are of special interest due to their biocompatibility.

View Article and Find Full Text PDF

Carbosilane dendrimers are hyperbranched lipophilic scaffolds widely explored in biomedical applications. This work exploits, for the first time, the ability of these scaffolds to generate functional hydrogels with amphiphilic properties. The monodispersity and multivalency enable a precise synthetic control of the network, while the lipophilicity improves the compatibility with poorly soluble cargo.

View Article and Find Full Text PDF

Drug delivery systems such as dendrimers, liposomes, polymers or gold/silver nanoparticles could be used to advance modern medicine. One significant pharmacological problem is crossing biological barriers by commonly used drugs, e.g.

View Article and Find Full Text PDF

Copper carbosilane metallodendrimers containing chloride ligands and nitrate ligands were mixed with commercially available conventional anticancer drugs, doxorubicin, methotrexate and 5-fluorouracil, for a possible therapeutic system. To verify the hypothesis that copper metallodendrimers can form conjugates with anticancer drugs, their complexes were biophysically characterized using zeta potential and zeta size methods. Next, to confirm the existence of a synergetic effect of dendrimers and drugs, in vitro studies were performed.

View Article and Find Full Text PDF

The threat of antimicrobial-resistant bacteria is ever increasing and over the past-decades development of novel therapeutic counter measurements have virtually come to a halt. This circumstance calls for interdisciplinary approaches to design, evaluate and validate the mode of action of novel antibacterial compounds. Hereby, carbosilane dendritic systems that exhibit antimicrobial properties have the potential to serve as synthetic and rationally designed molecules for therapeutic use.

View Article and Find Full Text PDF

Pluronics are a family of amphiphilic block copolymers broadly explored in the pharmaceutical field. Under certain conditions, Pluronics self-assemble in different structures including nanosized direct and reverse micelles. This review provides an overview about the main parameters affecting the micellization process of Pluronics, such as polymer length, fragments distribution within the chain, solvents, additives and loading of cargo.

View Article and Find Full Text PDF

Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action.

View Article and Find Full Text PDF

Over the course of the last decades, the continuous exposure of bacteria to antibiotics-at least in parts due to misprescription, misuse, and misdosing-has led to the widespread development of antimicrobial resistances. This development poses a threat to the available medication in losing their effectiveness in treating bacterial infections. On the drug development side, only minor advances have been made to bring forward novel therapeutics.

View Article and Find Full Text PDF

Cationic dendrimers are effective carriers for the delivery of siRNA into cells; they can penetrate cell membranes and protect nucleic acids against RNase degradation. Two types of dendrimers (CBD-1 and CBD-2) and their complexes with pro-apoptotic siRNA (Mcl-1 and Bcl-2) were tested on MCF-7 cells cultured as spheroids. Cytotoxicity of dendrimers and dendriplexes was measured using the live-dead test and Annexin V-FITC Apoptosis Detection Kit (flow cytometry).

View Article and Find Full Text PDF

The COVID-19 pandemic showed more deeply the need of our society to provide new therapeutic strategies to fight infectious diseases, not only against currently known illnesses, where common antibiotics and drugs appear to be not fully effective, but also against new infectious threats that may arise [...

View Article and Find Full Text PDF

Extraction/purification of proteins, at both analytical and industrial levels, is a limiting step that usually requires the use of organic solvents and involves tedious work and a high cost. This work proposes a more sustainable alternative based on the use of magnetic nanoparticles (MNPs) coated with carboxylate-terminated carbosilane dendrons. MNPs coated with first- and second-generation carbosilane dendrons and bare MNPs were employed for the extraction of proteins with different molecular weights and charges.

View Article and Find Full Text PDF

Cancer is one of the most important problems of modern medicine. At the present time, gene therapy has been developed against cancer, which includes the delivery of anticancer small interfering RNAs (siRNAs) directed at cancer proteins. The prospect of creating drugs based on RNA interference implies the use of delivery systems.

View Article and Find Full Text PDF

Accumulation of misfolded α-synuclein (α-syn) is a hallmark of Parkinson's disease (PD) thought to play important roles in the pathophysiology of the disease. Dendritic systems, able to modulate the folding of proteins, have emerged as promising new therapeutic strategies for PD treatment. Dendrimers have been shown to be effective at inhibiting α-syn aggregation in cell-free systems and in cell lines.

View Article and Find Full Text PDF