Publications by authors named "Francisco J Bezares"

As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy E, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies.

View Article and Find Full Text PDF

Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is generally performed on planar surfaces, which can be difficult to prepare and may limit the interaction of the sensing surface with targets in large volume samples. We propose that nanocomposite materials can be configured that both include SERS probes and provide a high surface area-to-volume format, i.e.

View Article and Find Full Text PDF

Mie-resonances in vertical, small aspect-ratio and subwavelength silicon nanopillars are investigated using visible bright-field µ-reflection measurements and Raman scattering. Pillar-to-pillar interactions were examined by comparing randomly to periodically arranged arrays with systematic variations in nanopillar diameter and array pitch. First- and second-order Mie resonances are observed in reflectance spectra as pronounced dips with minimum reflectances of several percent, suggesting an alternative approach to fabricating a perfect absorber.

View Article and Find Full Text PDF

Plasmonics provides great promise for nanophotonic applications. However, the high optical losses inherent in metal-based plasmonic systems have limited progress. Thus, it is critical to identify alternative low-loss materials.

View Article and Find Full Text PDF

This work demonstrates the production of a well-controlled, chemical gradient on the surface of graphene. By inducing a gradient of oxygen functional groups, drops of water and dimethyl-methylphosphonate (a nerve agent simulant) are "pulled" in the direction of increasing oxygen content, while fluorine gradients "push" the droplet motion in the direction of decreasing fluorine content. The direction of motion is broadly attributed to increasing/decreasing hydrophilicity, which is correlated to high/low adhesion and binding energy.

View Article and Find Full Text PDF

Near-field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle-based cluster assemblies have exhibited signal enhancements in surface-enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low-cost fabrication methods. Here an innovative method is developed for fabricating self-organized clusters of metal nanoparticles on diblock copolymer thin films as SERS-active structures.

View Article and Find Full Text PDF

Initial reports of plasmonic 'hot-spots' enabled the detection of single molecules via surface-enhanced Raman scattering (SERS) from random distributions of plasmonic nanoparticles. Investigations of systems with near-field plasmonically coupled nanoparticles began, however, the ability to fabricate reproducible arrays of such particles has been lacking. We report on the fabrication of large-area, periodic arrays of plasmonic 'hot-spots' using Ag atomic layer deposition to overcoat Si nanopillar templates leading to reproducible interpillar gaps down to <2 nm.

View Article and Find Full Text PDF

Efforts to create reproducible surface-enhanced Raman scattering (SERS)-based chemical and biological sensors has been hindered by difficulties in fabricating large-area SERS-active substrates with a uniform, reproducible SERS response that still provides sufficient enhancement for easy detection. Here we report on periodic arrays of Au-capped, vertically aligned silicon nanopillars that are embedded in a Au plane upon a Si substrate. We illustrate that these arrays are ideal for use as SERS sensor templates, in that they provide large, uniform and reproducible average enhancement factors up to ∼1.

View Article and Find Full Text PDF