Publications by authors named "Francisco J Adrian"

This study reports the pharmacologic effects of isatuximab, a CD38 mAb, on T- and B-cell acute lymphoblastic leukemia (ALL). We analyzed CD38 expression in 50-T-ALL and 50 B-ALL clinical samples, and 16 T-ALL and 11 B-ALL cell lines. We primarily focused on assessments of isatuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP).

View Article and Find Full Text PDF

Isatuximab is a monoclonal antibody targeting the transmembrane receptor and ectoenzyme CD38, a protein highly expressed on hematological malignant cells, including those in multiple myeloma (MM). Upon binding to CD38-expressing MM cells, isatuximab is thought to induce tumor cell killing via fragment crystallizable (Fc)-dependent mechanisms, including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), as well as via direct Fc-independent mechanisms. Here, these mechanisms of action were investigated in MM and diffuse large B-cell lymphoma (DLBCL) cell lines, as well as in peripheral blood mononuclear cells derived from healthy donors, and in MM patient-derived samples.

View Article and Find Full Text PDF

Inhibition of Bcr-Abl kinase activity by imatinib for the treatment of chronic myeloid leukemia (CML) currently serves as the paradigm for targeting dominant oncogenes with small molecules. We recently reported the discovery of GNF-2 (1) and GNF-5 (2) as selective non-ATP competitive inhibitors of cellular Bcr-Abl kinase activity that target the myristate binding site. Here, we used cell-based structure-activity relationships to guide the optimization and diversification of ligands that are capable of binding to the myristate binding site and rationalize the findings based upon an Abl-compound 1 cocrystal.

View Article and Find Full Text PDF

In an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr-Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model.

View Article and Find Full Text PDF

Kinase inhibitors that bind to the ATP cleft can be broadly classified into two groups: those that bind exclusively to the ATP site with the kinase assuming a conformation otherwise conducive to phosphotransfer (type I), and those that exploit a hydrophobic site immediately adjacent to the ATP pocket made accessible by a conformational rearrangement of the activation loop (type II). To date, all type II inhibitors were discovered by using structure-activity-guided optimization strategies. Here, we describe a general pharmacophore model of type II inhibition that enables a rational "hybrid-design" approach whereby a 3-trifluoromethylbenzamide functionality is appended to four distinct type I scaffolds in order to convert them into their corresponding type II counterparts.

View Article and Find Full Text PDF

Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-abl, a 210-kDa fusion protein with deregulated tyrosine kinase activity. Encouraged by the clinical validation of Bcr-abl as the target for the treatment of CML by imatinib, we sought to identify pharmacological agents that could target this kinase by a distinct mechanism. We report the discovery of a new class of Bcr-abl inhibitors using an unbiased differential cytotoxicity screen of a combinatorial kinase-directed heterocycle library.

View Article and Find Full Text PDF

Hymenialdisine (HMD) is a sponge-derived natural product kinase inhibitor with nanomolar activity against CDKs, Mek1, GSK3beta, and CK1 and micromolar activity against Chk1. In order to explore the broader application of the pyrrolo[2,3-c]azepine skeleton of HMD as a general kinase inhibitory scaffold, we searched for additional protein targets using affinity chromatography in conjunction with the synthesis of diverse HMD analogs and profiled HMD against a panel of 60 recombinant enzymes. This effort has led to nanomolar to micromolar inhibitors of 11 new targets including p90RSK, KDR, c-Kit, Fes, MAPK1, PAK2, PDK1, PKCtheta, PKD2, Rsk1, and SGK.

View Article and Find Full Text PDF