Publications by authors named "Francisco I Pugnaire"

Plant-plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species.

View Article and Find Full Text PDF

Background And Aims: Understanding patterns and mechanisms of nurse plant facilitation is important to predict the resilience of arid/semi-arid ecosystems to climate change. We investigate whether water availability and nurse species turnover interact to shape the facilitation pattern of widespread legume shrubs along a large elevation gradient. We also investigate whether leaf δ13C of nurse plants can track the facilitation pattern.

View Article and Find Full Text PDF

Climate change has led to shifts in phenology in many species distributed widely across taxonomic groups. It is, however, unclear how we should interpret these shifts without some sort of a yardstick. We assessed climate change effects on Allagoptera arenaria, a acaulescent palm, using open top chambers (OTCs) and rain gutters in the field to mimic expected temperature and rainfall changes in this area.

View Article and Find Full Text PDF

Introduction: Shrub promotes the survival, growth and reproduction of understory species by buffering the environmental extremes and improving limited resources (i.e., facilitation effect) in arid and semiarid regions.

View Article and Find Full Text PDF

Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities.

View Article and Find Full Text PDF

The least-cost economic theory of photosynthesis shows that water and nitrogen are mutually substitutable resources to achieve a given carbon gain. However, vegetation in the Sahel has to cope with the dual challenge imposed by drought and nutrient-poor soils. We addressed how variation in leaf nitrogen per area (N ) modulates leaf oxygen and carbon isotopic composition (δ O, δ C), as proxies of stomatal conductance and water-use efficiency, across 34 Sahelian woody species.

View Article and Find Full Text PDF

Background And Aims: Plants in dry Mediterranean mountains experience a double climatic stress: at low elevations, high temperatures coincide with water shortage during summer, while at high elevations temperature decreases and water availability increases. Cushion plants often act as nurses by improving the microclimate underneath their canopies, hosting beneficiary species that may reciprocally modify their benefactors' microenvironment. We assess how the nurse cushion plant Arenaria tetraquetra subsp.

View Article and Find Full Text PDF

Biological diversity depends on multiple, cooccurring ecological interactions. However, most studies focus on one interaction type at a time, leaving community ecologists unsure of how positive and negative associations among species combine to influence biodiversity patterns. Using surveys of plant populations in alpine communities worldwide, we explore patterns of positive and negative associations among triads of species (modules) and their relationship to local biodiversity.

View Article and Find Full Text PDF

Plant-soil feedbacks (PSFs) are interactions among plants, soil organisms, and abiotic soil conditions that influence plant performance, plant species diversity, and community structure, ultimately driving ecosystem processes. We review how climate change will alter PSFs and their potential consequences for ecosystem functioning. Climate change influences PSFs through the performance of interacting species and altered community composition resulting from changes in species distributions.

View Article and Find Full Text PDF

Positive interactions in plant communities are under-reported in subtropical systems most likely because they are not identified as stressful environments. However, environmental factors or disturbance can limit plant growth in any system and lead to stressful conditions. For instance, salinity and low nutrient and water availability generate a gradient of stressful conditions in coastal systems depending on distance to shore.

View Article and Find Full Text PDF

Substantial amounts of nutrients are lost from soils through leaching. These losses can be environmentally damaging, causing groundwater eutrophication and also comprise an economic burden in terms of lost agricultural production. More intense precipitation events caused by climate change will likely aggravate this problem.

View Article and Find Full Text PDF

The stress-gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta-analysis to compare temporal differences of species diversity and productivity under a nurse plant () with varying annual rainfall quantity to test the effect of water limitation on facilitation.

View Article and Find Full Text PDF

Nurse plants promote establishment of other plant species by buffering climate extremes and improving soil properties. Soil biota plays an important role, but an analysis to disentangle the effects of soil microorganisms, soil properties and microclimate on facilitation is lacking. In three microhabitats (gaps, small and large Retama shrubs), we placed six microcosms with sterilized soil, two per soil origin (i.

View Article and Find Full Text PDF

Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level.

View Article and Find Full Text PDF

One-way facilitation in plants has been found in many harsh environments and their role as structural forces governing species composition in plant communities is now well established. However, reciprocal positive effects benefiting two interacting species have seldom been reported and, in recent reviews, conceptually considered merely as facilitation when in fact there is room for adaptive strategies and evolutionary responses. We tested the existence of such reciprocal positive effects in an arid environment in SE Spain using spatial pattern analysis, a species removal experiment, and a natural experiment.

View Article and Find Full Text PDF

Foundation species can change plant community structure by modulating important ecological processes such as community assembly, yet this topic is poorly understood. In alpine systems, cushion plants commonly act as foundation species by ameliorating local conditions. Here, we analyze diversity patterns of species' assembly within cushions and in adjacent surrounding open substrates (83 sites across five continents) calculating floristic dissimilarity between replicate plots, and using linear models to analyze relationships between microhabitats and species diversity.

View Article and Find Full Text PDF

In arid systems, most plant mortality occurs during long drought periods when water is not available for plant uptake. In these systems, plants often benefit from scarce rain events occurring during drought but some of the mechanisms underlying this water use remain unknown. In this context, plant water use and redistribution after a large rain event could be a mechanism that allows deep-rooted shrubs to conservatively use water during drought.

View Article and Find Full Text PDF
Article Synopsis
  • Facilitative effects between species play a key role in driving biodiversity, but they can lead to negative feedback for the benefactor species.
  • A study reanalyzed data on alpine cushion plants to understand how small- and large-scale environmental factors influence these feedback effects, noting that greater beneficiary diversity resulted in stronger negative impacts on the benefactor cushions.
  • The research indicates that local conditions and productivity levels can affect these feedback effects, suggesting that the variances in context help maintain the stability of facilitative relationships in ecosystems.
View Article and Find Full Text PDF

Facilitative interactions are defined as positive effects of one species on another, but bidirectional feedbacks may be positive, neutral, or negative. Understanding the bidirectional nature of these interactions is a fundamental prerequisite for the assessment of the potential evolutionary consequences of facilitation. In a global study combining observational and experimental approaches, we quantified the impact of the cover and richness of species associated with alpine cushion plants on reproductive traits of the benefactor cushions.

View Article and Find Full Text PDF
Article Synopsis
  • Local-scale interactions among species are influential for diversity, but their impact may be less significant at larger scales.
  • A study across 78 global sites found that climate, particularly water balance, has a greater correlation with plant diversity in alpine regions than biotic interactions.
  • However, cushion species still play a crucial role in increasing diversity, especially in areas with low local diversity, suggesting that both climate and species interactions need to be considered for understanding biodiversity impacts from climate change.
View Article and Find Full Text PDF

Mountainous rural communities have traditionally managed their land extensively, resulting in land uses that provide important ecosystem services for both rural and urban areas. Over recent decades, these communities have undergone drastic changes in economic structure, population size and land use. Our understanding of the exact mechanisms that drive these changes is limited, and there is also a lack of integrative approaches to enable decision makers to steer rural development towards a more sustainable path.

View Article and Find Full Text PDF

Here, we incorporate facilitation into trait-based community assembly theory by testing two mutually compatible facilitative mechanisms: changes in the environmental filter, causing either an increase in the range of trait values (i.e. a range expansion effect) and/or a shift in trait distributions (i.

View Article and Find Full Text PDF

Hydraulic lift (HL) - the passive movement of water through plant roots from deep wet to shallow drier soil layers - can improve root survival in dry soils by providing a source of moisture to shallow roots. It may also enhance plant nutrient capture, though empirical evidence for this is scarce and whether HL promotes the selective placement of roots in nutrient-rich soil enhancing nutrient capture in dry soils remains unknown. We tested this with a split-pot design in which we separated the root system of Retama sphaerocarpa (L.

View Article and Find Full Text PDF

Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels.

View Article and Find Full Text PDF

Background: Root competition is an almost ubiquitous feature of plant communities with profound effects on their structure and composition. Far beyond the traditional view that plants interact mainly through resource depletion (exploitation competition), roots are known to be able to interact with their environment using a large variety of mechanisms that may inhibit or enhance access of other roots to the resource or affect plant growth (contest interactions). However, an extensive analysis on how these contest root interactions may affect species interaction abilities is almost lacking.

View Article and Find Full Text PDF