Publications by authors named "Francisco Guimaraes"

Rationale: The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects.

View Article and Find Full Text PDF

Innate fear stimulus induces activation of neurons containing the neuronal nitric oxide synthase enzyme (nNOS) in defensive-related brain regions such as the dorsolateral periaqueductal gray (dlPAG). Intra-dlPAG administration of nitric oxide synthase (NOS) inhibitors and glutamate antagonists induce anxiolytic-like responses. We investigated the involvement of nitric oxide (NO) and glutamate neurotransmission in defensive reactions modulated by dlPAG.

View Article and Find Full Text PDF

Background And Purpose: Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa which induces anxiolytic- and antipsychotic-like effects in rodents. These effects could be mediated by facilitation of the endocannabinoid system or by the activation of 5-HT(1A) receptors. As either of these mechanisms could promote adaptation to inescapable stress, the aim of the present work was to test the hypothesis that CBD would attenuate the autonomic and behavioural consequences of restraint stress (RS).

View Article and Find Full Text PDF

Cannabidiol (CBD) is a cannabinoid component from Cannabis sativa that does not induce psychotomimetic effects and possess anti-inflammatory properties. In the present study we tested the effects of CBD in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying these effects.

View Article and Find Full Text PDF

The endocannabinoid anandamide is a possible agonist at the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel, in addition to its agonist activity at cannabinoid type 1 (CB1) receptor. In the midbrain dorsolateral periaqueductal gray (dlPAG) our previous data showed that CB1 activation induces anxiolytic-like effects. However, the role of TRPV1 has remained unclear.

View Article and Find Full Text PDF

Oxidative stress disturbances have been reported in depressed patients and in animals submitted to stress. Recent evidence suggests that antidepressants may have antioxidant properties. However, the therapeutic potential of antioxidants as antidepressant drugs has not been systematically investigated.

View Article and Find Full Text PDF

There are contradictory results concerning the effects of systemic injections of cannabinoid agonists in anxiety-induced behavioral changes. Direct drug administration into brain structures related to defensive responses could help to clarify the role of cannabinoids in these changes. Activation of cannabinoid CB(1) receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze.

View Article and Find Full Text PDF

Rationale: Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa plant that induces anxiolytic effects. However, the brain sites and mechanisms of these effects remain poorly understood. The dorsolateral periaqueductal gray (dlPAG) is a midbrain structure related to anxiety that contains receptors proposed to interact with CBD such as 5HT1A.

View Article and Find Full Text PDF

Although abnormalities in brain structures involved in the neurobiology of fear and anxiety have been implicated in the pathophysiology of panic disorder (PD), relatively few studies have made use of voxel-based morphometry (VBM) magnetic resonance imaging (MRI) to determine structural brain abnormalities in PD. We have assessed gray matter volume in 19 PD patients and 20 healthy volunteers using VBM. Images were acquired using a 1.

View Article and Find Full Text PDF

In rats, conditioned fear to context causes freezing immobility and cardiovascular changes. The dorsal hippocampus (DH) has a critical role in several memory processes, including conditioning fear to contextual information. To explore a possible involvement of the DH in contextual fear conditioning-evoked cardiovascular (mean arterial pressure and heart rate increases) and behavioral (freezing) responses, DH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the nonselective synapse blocker, cobalt chloride (CoCl2, 1 mmol/l), at different periods of the experimental procedure.

View Article and Find Full Text PDF

Lack of effects of clomipramine on Fos and NADPH-diaphorase double-staining in the periaqueductal gray after exposure to an innate fear stimulus--nitric oxide (NO) acts as a neurotransmitter in the rat dorsolateral periaqueductal gray (dlPAG), a midbrain structure that modulates fear and defensive behavior. Since defensive reactions can be alleviated by anxiolytic/anti-panic drugs, the present study tested the effect of clomipramine, a serotonin re-uptake inhibitor, on the activation of NO-producing neurons in the dlPAG of rats exposed to a live predator. Double staining was performed using Fos immunohistochemistry and NADPH-diaphorase as techniques to mark neural activation and to detect NO-producing neurons, respectively.

View Article and Find Full Text PDF

The ventral portion of medial prefrontal cortex (vMPFC) is involved in contextual fear-conditioning expression in rats. In the present study, we investigated the role of local N-methyl-D-aspartic acid (NMDA) glutamate receptors and nitric oxide (NO) in vMPFC on the behavioral (freezing) and cardiovascular (increase of arterial pressure and heart rate) responses of rats exposed to a context fear conditioning. The results showed that both freezing and cardiovascular responses to contextual fear conditioning were reduced by bilateral administration of NMDA receptor antagonist LY235959 (4 nmol/200 nL) into the vMPFC before reexposition to conditioned chamber.

View Article and Find Full Text PDF

Aripiprazole is an atypical antipsychotic that acts as a partial agonist at the dopamine D(2) receptor. It has been mainly investigated in dopamine-based models of schizophrenia, while its effects on glutamate-based paradigms have remained to be further characterized. Due to its unique mechanism of action, aripiprazole has also been considered as a replacement medication for psychostimulant abuse.

View Article and Find Full Text PDF

Glutamatergic neurotransmission in the dorsolateral periaqueductal gray (dlPAG) is related to defensive responses. However, the role of group I glutamate metabotropic receptors (mGluR) in these responses has been poorly investigated. The objective of the present study, therefore, was to test the hypothesis that interference with group I mGluR-mediated neurotransmission in dlPAG could modulate defensive responses.

View Article and Find Full Text PDF

Several findings relate the hippocampal formation to the behavioural consequences of stress. It contains a high concentration of corticoid receptors and undergoes plastic modifications, including decreased neurogenesis and cellular remodelling, following stress exposure. Various major neurotransmitter systems in the hippocampus are involved in these effects.

View Article and Find Full Text PDF

Synaptophysin is a protein involved in the biogenesis of synaptic vesicles and budding. It has been used as an important tool to investigate plastic effects on synaptic transmission. Nitric oxide (NO) can influence plastic changes in specific brain regions related to cognition and emotion.

View Article and Find Full Text PDF

Contradictory results exist concerning the effects of systemic injections of CB(1) cannabinoid receptor agonists on anxiety-related behaviors. Direct drug administration into brain structures related to aversive responses can potentially help to clarify the role of cannabinoids on anxiety. One such structure is the midbrain dorsolateral periaqueductal gray (dlPAG).

View Article and Find Full Text PDF

Antidepressant treatment attenuates behavioral changes induced by uncontrollable stress. The periaqueductal gray matter (PAG) is proposed to be a brain site involved in the behavioral responses to uncontrollable stress and antidepressant effects. The main goal of the present study was to investigate the effect of antidepressant treatment on the pattern of neural activation of the PAG along its mediolateral and rostrocaudal subregions after a forced swim stress episode.

View Article and Find Full Text PDF

The hippocampus has been implicated in the regulation of anxiety and memory processes. Nevertheless, the precise contribution of its ventral (VH) and dorsal (DH) division in these issues still remains a matter of debate. The Trial 1/2 protocol in the elevated plus-maze (EPM) is a suitable approach to assess features associated with anxiety and memory.

View Article and Find Full Text PDF

Cannabidiol (CBD) is a major constituent of the Cannabis sativa plant. It inhibits the anxiogenic activity of high doses of Delta9-tetrahydrocannabinol and induces anxiolytic-like effects. However, the mechanisms underlying the actions of CBD are unknown.

View Article and Find Full Text PDF

The fabrication of varied molecular architectures in layer-by-layer (LbL) films is exploited to control the photoluminescence (PL) of poly(p-phenylene vinylene) (PPV) in an unprecedented way. This was achieved by controlling the Förster energy transfer between PPV layers (donors) and layers of a commercial azodye, Brilliant Yellow (BY) (acceptors). Energy transfer was controlled by inserting spacer layers of inert polymers between PPV and BY layers and by photoaligning the BY molecules via trans-cis-trans isomerization.

View Article and Find Full Text PDF

Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects similar to diazepam in animal models of innate aversive behavior. However, the effects of CBD contextual conditioned fear have not been studied. Therefore, the aim of this work was to compare the behavioral and cardiovascular effects of CBD and diazepam, a prototype anxiolytic, in animals submitted to a contextual conditioned fear paradigm.

View Article and Find Full Text PDF

The elevated plus-maze (EPM) is one of the most used animal models of anxiety. Exposure to the EPM activates brain regions related to anxiety/fear. Systemic or intra-dorsolateral periaqueductal gray (dlPAG) inhibition of nitric oxide synthase (NOS) induces anxiolytic effect in animals submitted to an EPM.

View Article and Find Full Text PDF

Recent pieces of evidence suggest that the dorsal hippocampus may mediate adaptation to severe and inescapable stress, possibly by the facilitation of serotonergic and/or noradrenergic neurotransmission. Chronic social stress and high corticosteroid levels would impair this coping mechanism, predisposing animals to learned helplessness. To test the hypothesis that increasing serotonin or noradrenaline levels in the dorsal hippocampus would attenuate the development of learned helplessness (LH), rats received inescapable foot shock (IS) and were tested in a shuttle box 24 h latter.

View Article and Find Full Text PDF

The present study investigated if NOS positive neurons localized in regions related to defensive reactions are activated after exposure to an innate fear stimulus (a live cat). Male Wistar rats were exposed to a live or a toy cat for 10 min and 2h later had their brains removed and processed for c-Fos immunohistochemistry (a marker of neuronal functional activation) and NADPH-diaphorase (NADPH-d; used to detect the presence of NOS neurons) histochemistry. Cat exposure induced a small (11%) to moderate (50%) significant increase in the percentage of double-stained cells (c-Fos+NADPH-d positive neurons) in the anteromedial bed nucleus of stria terminalis (BSTMA), medial amygdala (MeA), parvocellular paraventricular (pPVN), lateral (LH) and dorsal premammillary (PMd) hypothalamic nuclei, dorsolateral periaqueductal grey (dlPAG) and dorsal raphe nucleus (DRN).

View Article and Find Full Text PDF