Proc Natl Acad Sci U S A
January 2014
In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the "splash singularity" blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler equation in the form of the water waves contour evolution problem. Our result confirms the numerical simulations in earlier work, in which it was shown that the curvature blows up because the contours collapse at a point.
View Article and Find Full Text PDFWe exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2009
For the free boundary dynamics of the two-phase Hele-Shaw and Muskat problems, and also for the irrotational incompressible Euler equation, we prove existence locally in time when the Rayleigh-Taylor condition is initially satisfied for a 2D interface. The result for water waves was first obtained by Wu in a slightly different scenario (vanishing at infinity), but our approach is different because it emphasizes the active scalar character of the system and does not require the presence of gravity.
View Article and Find Full Text PDF