Rare diseases affect a small part of the population, and the most affected are children. Because of the low availability of patients for testing, the pharmaceutical industry cannot develop drugs for the diagnosis of many of these orphan diseases. In this sense, the use of benzothiazole compounds that are highly selective and can act as spectroscopy probes, especially the compound 2-(4'-aminophenyl)benzothiazole (ABT), has been highlighted.
View Article and Find Full Text PDFUsing dual-photoelectrode photoelectrochemical (PEC) devices based on earth-abundant metal oxides for unbiased water splitting is an attractive means of producing green H fuel, but is challenging, owing to low photovoltages generated by PEC cells. This problem can be solved by coupling n-type BiVO with n-type Bi V O to create a virtual p/n junction due to the formation of a hole-inversion layer at the semiconductor interface. Thus, photoelectrodes with high photovoltage outputs were synthesized.
View Article and Find Full Text PDFA significant enhancement in the catalytic performance due to enzymes immobilization is a great way to enhance the economics of biocatalytic processes. The soybean peroxidase (SP) immobilization under ferroxyte and the ferulic acid removal by the enzyme free and immobilized were investigated. The immobilization via silica-coated ferroxyte nanoparticles was effective, and immobilization yield of 39%.
View Article and Find Full Text PDFPerovskite strontium titanate is a promising functional material for gas sensors and catalysis applications. Herein, we report the preparation of SrTi1-xCuxO3 nanoparticles with Cu doped in the B sites using a modified polymeric precursor method. This study describes in detail the structural and local atomic configurations for the substitution of Cu into the titanium sites and its reducibility using X-ray diffraction (XRD), field emission gun scanning and transmission electron microscopies (FEG-SEM and TEM), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) analyses.
View Article and Find Full Text PDFThe leather industry produces a large quantity of solid waste (wet blue leather), which contains a high amount of chromium. After its removal from wet blue leather, a solid collagenic material is recovered, containing high nitrogen levels, which can be used as a nitrogen source in agriculture. In order to take more advantage of the collagen, it was enriched with mineral P and K in order to produce NPK formulations.
View Article and Find Full Text PDFThe feasibility of using a solid waste (rich in nitrogen) from the leather industry, after chromium extraction, as adsorbent for P and K, for possible utilization as NPK fertilizer was evaluated. The materials, with and without the addition of P and K, were characterized by chemical analyses, infrared spectroscopy, EDS (energy dispersive X-ray spectrometry) and SEM (scanning electronic microscopy). Langmuir and Freundlich equations were used for analyzing the experimental data, which showed a better fit to the Freundlich model, thus suggesting a multilayer adsorption process on the surface of the adsorbent.
View Article and Find Full Text PDF