Design requirements for different mechanical metamaterials, porous constructions and lattice structures, employed as tissue engineering scaffolds, lead to multi-objective optimizations, due to the complex mechanical features of the biological tissues and structures they should mimic. In some cases, the use of conventional design and simulation methods for designing such tissue engineering scaffolds cannot be applied because of geometrical complexity, manufacturing defects or large aspect ratios leading to numerical mismatches. Artificial intelligence (AI) in general, and machine learning (ML) methods in particular, are already finding applications in tissue engineering and they can prove transformative resources for supporting designers in the field of regenerative medicine.
View Article and Find Full Text PDFArtificial intelligence (AI) has emerged as a powerful set of tools for engineering innovative materials. However, the AI-aided design of materials textures has not yet been researched in depth. In order to explore the potentials of AI for discovering innovative biointerfaces and engineering materials surfaces, especially for biomedical applications, this study focuses on the control of wettability through design-controlled hierarchical surfaces, whose design is supported and its performance predicted thanks to adequately structured and trained artificial neural networks (ANN).
View Article and Find Full Text PDF