All tissue-resident macrophages of the central nervous system (CNS)-including parenchymal microglia, as well as CNS-associated macrophages (CAMs) such as meningeal and perivascular macrophages-are part of the CNS endogenous innate immune system that acts as the first line of defence during infections or trauma. It has been suggested that microglia and all subsets of CAMs are derived from prenatal cellular sources in the yolk sac that were defined as early erythromyeloid progenitors. However, the precise ontogenetic relationships, the underlying transcriptional programs and the molecular signals that drive the development of distinct CAM subsets in situ are poorly understood.
View Article and Find Full Text PDFSarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate.
View Article and Find Full Text PDFPericytes are vascular mural cells that surround capillaries of the central nervous system (CNS). They are crucial for brain development and contribute to CNS homeostasis by regulating blood-brain barrier function and cerebral blood flow. It has been suggested that pericytes are lost in Alzheimer's disease (AD), implicating this cell type in disease pathology.
View Article and Find Full Text PDFNeural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear.
View Article and Find Full Text PDFIn this multi-institutional study we compiled a retrospective cohort of 86 posterior fossa tumors having received the diagnosis of cerebellar glioblastoma (cGBM). All tumors were reviewed histologically and subjected to array-based methylation analysis followed by algorithm-based classification into distinct methylation classes (MCs). The single MC containing the largest proportion of 25 tumors diagnosed as cGBM was MC anaplastic astrocytoma with piloid features representing a recently-described molecular tumor entity not yet included in the WHO Classification of Tumours of the Central Nervous System (WHO classification).
View Article and Find Full Text PDFMolecular markers have become pivotal in brain tumor diagnostics. Mutational analyses by targeted next-generation sequencing of DNA and array-based DNA methylation assessment with copy number analyses are increasingly being used in routine diagnostics. However, the broad variety of gene fusions occurring in brain tumors is marginally covered by these technologies and often only assessed by targeted assays.
View Article and Find Full Text PDFPapillary glioneuronal tumor (PGNT) is a WHO-defined brain tumor entity that poses a major diagnostic challenge. Recently, SLC44A1-PRKCA fusions have been described in PGNT. We subjected 28 brain tumors from different institutions histologically diagnosed as PGNT to molecular and morphological analysis.
View Article and Find Full Text PDFMicroglia constitute a highly specialized network of tissue-resident immune cells that is important for the control of tissue homeostasis and the resolution of diseases of the CNS. Little is known about how their spatial distribution is established and maintained in vivo. Here we establish a new multicolor fluorescence fate mapping system to monitor microglial dynamics during steady state and disease.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
June 2015
Pericytes are mural cells with contractile properties. Here, we provide evidence that microvascular pericytes modulate cerebral blood flow in response to neuronal activity ('functional hyperemia'). Besides their role in neurovascular coupling, pericytes are responsive to brain damage.
View Article and Find Full Text PDFTissue fibrosis, or scar formation, is a common response to damage in most organs of the body. The central nervous system (CNS) is special in that fibrogenic cells are restricted to vascular and meningeal niches. However, disruption of the blood-brain barrier and inflammation can unleash stromal cells and trigger scar formation.
View Article and Find Full Text PDFBone marrow-derived cells (BMDCs) are able to colonize the central nervous system (CNS) at sites of damage. This ability makes BMDCs an ideal cellular vehicle for transferring therapeutic genes/molecules to the CNS. However, conditioning is required for bone marrow-derived myeloid cells to engraft in the brain, which so far has been achieved by total body irradiation (TBI) and by chemotherapy (e.
View Article and Find Full Text PDFDendritic cells (DCs) are essential regulators of immune responses; however, transcriptional mechanisms that establish DC lineage commitment are poorly defined. Here, we report that the PU.1 transcription factor induces specific remodeling of the higher-order chromatin structure at the interferon regulatory factor 8 (Irf8) gene to initiate DC fate choice.
View Article and Find Full Text PDFBackground And Purpose: Clinical and experimental evidence suggests that spreading depolarization facilitates neuronal injury when its duration exceeds a certain time point, termed commitment point. We here investigated whether this commitment point is shifted to an earlier period, when spreading depolarization is accompanied by a perfusion deficit.
Methods: Electrophysiological and cerebral blood flow changes were studied in a rat cranial window model followed by histological and immunohistochemical analyses of cortical damage.
Despite its limited regenerative capacity, the central nervous system (CNS) shares more repair mechanisms with peripheral tissues than previously recognized. Scar formation is a ubiquitous healing mechanism aimed at patching tissue defects via the generation of fibrous extracellular matrix (ECM). This process, orchestrated by stromal cells, can unfavorably affect the capacity of tissues to restore function.
View Article and Find Full Text PDFBackground Aims: Multipotent mesenchymal stromal cells (MSC) secrete soluble factors that stimulate the surrounding microenvironment. Such paracrine effects might underlie the potential benefits of many stem cell therapies. We tested the hypothesis that MSC are able to enhance intrinsic cellular plasticity in the adult rat hippocampus.
View Article and Find Full Text PDFModern functional imaging techniques of the brain measure local hemodynamic responses evoked by neuronal activity. Capillary pericytes recently were suggested to mediate neurovascular coupling in brain slices, but their role in vivo remains unexplored. We used two-photon microscopy to study in real time pericytes and the dynamic changes of capillary diameter and blood flow in the cortex of anesthetized mice, as well as in brain slices.
View Article and Find Full Text PDFDifferentiation of bone marrow (BM) cells into astroglia expressing the glial fibrillary acidic protein (GFAP) has been reported in vitro and after intracerebral or systemic BM transplantation. In contrast, recent data suggest that astrocytic differentiation does not occur from BM-derived cells in vivo. Using transgenic mice that express the enhanced green fluorescent protein (GFP) under the control of the human glial fibrillary acidic protein (GFAP) promoter, we investigated the potential of adult murine BM-derived cells to differentiate into macroglia.
View Article and Find Full Text PDF