Chemical studies of twigs yielded two compounds, identified as taraxerol () and methyl gallate (). The galloyl moiety was suggested as a potential scaffold that can interfere with proteases by previous biological investigations on SARS-CoV-2 main protease (M) inhibitors in combination with docking studies. Therefore, a series of 13 gallate esters were prepared by treating gallic acid with natural and non-natural alcohols.
View Article and Find Full Text PDFThe present work reports the inhibitory effect of amides derived from gallic acid (gallamides) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (M), along with cytotoxicity evaluation and molecular docking studies. In addition to gallamides, other relevant compounds were also synthesized and evaluated against M, making a total of 25 compounds. Eight compounds presented solubility issues during the inhibitory assay and one showed no inhibitory activity.
View Article and Find Full Text PDFThe SARS-CoV-2 mutation and the limitation of the approved drug against COVID-19 are still a challenge in many country healthcare systems and need to be affronted despite the set of vaccines to prevent this viral infection. To contribute to the identification of new antiviral agents, the present study focused on natural products from an edible fruit with potential inhibitory effects against the SARS-CoV-2 main protease (M). First, LC-ESIMS analysis of Platonia insignis fruits was performed and showed the presence of biflavonoids and benzophenones in the seed and pulp, respectively.
View Article and Find Full Text PDFCOVID-19 has caused many deaths since the first outbreak in 2019. The burden on healthcare systems around the world has been reduced by the success of vaccines. However, population adherence and the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are still challenging tasks to be affronted.
View Article and Find Full Text PDFSARS-CoV-2 main protease (M ) plays an essential role in proteolysis cleavage that promotes coronavirus replication. Thus, attenuating the activity of this enzyme represents a strategy to develop antiviral agents. We report inhibitory effects against M of 40 synthetic chalcones, and cytotoxicity activities, hemolysis, and in silico interactions of active compounds.
View Article and Find Full Text PDFWe report herein the synthesis of primary and secondary β-chalcogen amines through the regioselective ring-opening reaction of non-activated 2-oxazolidinones promoted by generated chalcogenolate anions. The developed one-step protocol enabled the preparation of β-selenoamines, β-telluroamines and β-thioamines with appreciable structural diversity and in yields of up to 95%.
View Article and Find Full Text PDFBackground: COVID-19 is still causing long-term health consequences, mass deaths, and collapsing healthcare systems around the world. There are no efficient drugs for its treatment. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.
View Article and Find Full Text PDFAn efficient and practical method for the enantioselective β-functionalization of α,β-unsaturated 2-acyl imidazoles is described. The method uses a previously devised chiral-at-metal rhodium catalyst (Λ-RhS, 4 mol %) along with Hantzsch ester derivatives as alkyl radical sources. The rhodium complex exerts a dual role as the visible-light-absorbing unit upon substrate binding and as the asymmetric catalyst.
View Article and Find Full Text PDFIn this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide.
View Article and Find Full Text PDFThe synthesis of a new tetrabromobacteriochlorin BCBr4 is reported having the 3,4-dibromo-1H-pyrrole-2-carbaldehyde (10) as the major precursor. The BCBr4 was successfully employed in Pd cross-coupling reactions with methyl acrylate, phenyl acetylene and 4-ethynylanisole. In all three cases, the desired tetra-coupled products were obtained in good to excellent yields, and present a significant red shift in the UV-Vis bands above 800 nm.
View Article and Find Full Text PDFThe synergistic effect produced by metallic nanoparticles when incorporated into different systems empowers a research field that is growing rapidly. In addition, organometallic materials are at the center of intensive research with diverse applications such as light-emitting devices, transistors, solar cells, and sensors. The Langmuir-Blodgett (LB) technique has proven to be suitable to address challenges inherent to organic devices, since the film properties can be tuned at the molecular level.
View Article and Find Full Text PDFIn this work the synthesis and antiparasitical activity of new 1,5-diaryl-3-oxo-1,4-pentadienyl derivatives are described. First, compounds 1a, 1b, 1c and 1d were prepared by acid-catalyzed aldol reaction between 2-butanone and benzaldehyde, anisaldehyde, p-N,N-dimethylaminobenzaldehyde and p-nitrobenzaldehyde. Reacting each of the methyl ketones 1a, 1b, 1c and 1d with the p-substituted benzaldehydes under basic-catalyzed aldol reaction, we further prepared compounds 2a-2p.
View Article and Find Full Text PDFSyntheses of two water-soluble phthalocyanines (Pc) containing 5-aminolevulinic acid (ALA) linked to the core structure are described. These compounds were prepared by using original functionalizations, and they present remarkable structural and photophysical features, indicating that they could be applied to photodynamic therapy (PDT).
View Article and Find Full Text PDF