Publications by authors named "Francisco Cruz-Mazo"

Article Synopsis
  • The European XFEL and LCLS II are powerful X-ray sources that can collect detailed data from crystals at rapid megahertz rates.
  • Researchers used these X-ray pulses to gather two complete datasets from a single lysozyme crystal in less than 1 microsecond, achieving high-resolution structures.
  • The comparison of these structures showed no radiation damage or significant changes, indicating that this multi-hit SFX technique can effectively capture fast structural changes in crystals.
View Article and Find Full Text PDF

The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.

View Article and Find Full Text PDF
Article Synopsis
  • The European X-ray Free-Electron Laser (XFEL) is the first of its kind to deliver X-ray pulses at megahertz pulse rates, vastly improving on previous technologies.
  • Researchers have successfully measured high-quality diffraction data at these new pulse rates, validating the laser's capabilities.
  • Two complete datasets were collected: one from lysozyme and another from a β-lactamase complex, demonstrating the potential for advanced structural analysis and dynamic measurements in molecular science.
View Article and Find Full Text PDF

Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse.

View Article and Find Full Text PDF

We identify and analyze the perfectly regular dripping mode of flow focusing. This mode occurs within narrow intervals of injected flow rates and applied pressure drops and leads to homogeneous-size droplets with diameters similar to or smaller than that of the discharge orifice. The balance between the local acceleration of the fluid particle and the applied pressure drop yields the scaling law for the droplet diameter.

View Article and Find Full Text PDF