CH/π bonds are versatile elements for the construction of complex molecular architectures, thus playing key roles in many biomolecular recognition processes. Although seldom acknowledged, aromatic units are inherently bivalent and can participate in CH/π bonds through either face simultaneously, leading to the formation of stacking complexes. This sandwich-like arrangement is by far the most common in natural complexes and could potentially lead to negative cooperativity due to unfavorable polarization or electrostatic effects, especially when polarized CH fragments are involved.
View Article and Find Full Text PDFGlycopeptides derived from the glycoprotein mucin-1 (MUC1) have shown potential as tumor-associated antigens for cancer vaccine development. However, their low immunogenicity and non-selective conjugation to carriers present significant challenges for the clinical efficacy of MUC1-based vaccines. Here, we introduce a novel vaccine candidate based on a structure-guided design of an artificial antigen derived from MUC1 glycopeptide.
View Article and Find Full Text PDFPancreatic cancer is one of the deadliest cancers worldwide, mainly due to late diagnosis. Therefore, there is an urgent need for novel diagnostic approaches to identify the disease as early as possible. We have developed a diagnostic assay for pancreatic cancer based on the detection of naturally occurring tumor associated autoantibodies against Mucin-1 (MUC1) using engineered glycopeptides on nanoparticle probes.
View Article and Find Full Text PDFCH/π interactions are prevalent among aromatic complexes and represent invaluable tools for stabilizing well-defined molecular architectures. Their energy contributions are exceptionally sensitive to various structural and environmental factors, resulting in a context-dependent nature that has led to conflicting findings in the scientific literature. Consequently, a universally accepted hierarchy for aromatic CH/π interactions has remained elusive.
View Article and Find Full Text PDFMucin-1 (MUC1) glycopeptides are exceptional candidates for potential cancer vaccines. However, their autoantigenic nature often results in a weak immune response. To overcome this drawback, we carefully engineered synthetic antigens with precise chemical modifications.
View Article and Find Full Text PDFSoluble HMW1C-like N-glycosyltransferases (NGTs) catalyze the glycosylation of Asn residues in proteins, a process fundamental for bacterial autoaggregation, adhesion and pathogenicity. However, our understanding of their molecular mechanisms is hindered by the lack of structures of enzymatic complexes. Here, we report structures of binary and ternary NGT complexes of Aggregatibacter aphrophilus NGT (AaNGT), revealing an essential dyad of basic/acidic residues located in the N-terminal all α-domain (AAD) that intimately recognizes the Thr residue within the conserved motif Asn-X-Ser/Thr.
View Article and Find Full Text PDFNature has evolved intricate machinery to target and degrade RNA, and some of these molecular mechanisms can be adapted for therapeutic use. Small interfering RNAs and RNase H-inducing oligonucleotides have yielded therapeutic agents against diseases that cannot be tackled using protein-centered approaches. Because these therapeutic agents are nucleic acid-based, they have several inherent drawbacks which include poor cellular uptake and stability.
View Article and Find Full Text PDFRed blood cell antigens play critical roles in blood transfusion since donor incompatibilities can be lethal. Recipients with the rare total deficiency in H antigen, the O Bombay phenotype, can only be transfused with group O blood to avoid serious transfusion reactions. We discover FucOB from the mucin-degrading bacteria Akkermansia muciniphila as an α-1,2-fucosidase able to hydrolyze Type I, Type II, Type III and Type V H antigens to obtain the afucosylated Bombay phenotype in vitro.
View Article and Find Full Text PDFBacterial pathogens have evolved intricate mechanisms to evade the human immune system, including the production of immunomodulatory enzymes. Streptococcus pyogenes serotypes secrete two multi-modular endo-β-N-acetylglucosaminidases, EndoS and EndoS2, that specifically deglycosylate the conserved N-glycan at Asn297 on IgG Fc, disabling antibody-mediated effector functions. Amongst thousands of known carbohydrate-active enzymes, EndoS and EndoS2 represent just a handful of enzymes that are specific to the protein portion of the glycoprotein substrate, not just the glycan component.
View Article and Find Full Text PDFAcetylgalactosamine (GalNAc)-type O-glycosylation is an essential posttranslational modification (PTM) that plays fundamental roles in biology. Malfunction of this PTM is exemplified by the presence of truncated -glycans in cancer. For instance, the glycoprotein MUC1 is overexpressed in many tumor tissues and tends to carry simple oligosaccharides that allow for the presentation of different tumor-associated antigens, such as the Tn or sTn antigens (GalNAc-α-1-O-Thr/Ser and Neu5Acα2-6GalNAcα1-O-Ser/Thr, respectively).
View Article and Find Full Text PDFNMR methods, and in particular ligand-based approaches, are among the most robust and reliable alternatives for binding detection and consequently, they have become highly popular in the context of hit identification and drug discovery. However, when dealing with DNA/RNA targets, these techniques face limitations that have precluded widespread application in medicinal chemistry. In order to expand the arsenal of spectroscopic tools for binding detection and to overcome the existing difficulties, herein we explore the scope and limitations of a strategy that makes use of a binding indicator previously unexploited by NMR: the perturbation of the ligand reactivity caused by complex formation.
View Article and Find Full Text PDFOsteosarcoma is a heterogeneous tumor intimately linked to its microenvironment, which promotes its growth and spread. It is generally accompanied by cancer-induced bone pain (CIBP), whose main component is neuropathic pain. The TRPA1 ion channel plays a key role in metastasis and is increasingly expressed in bone cancer.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
November 2022
Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation.
View Article and Find Full Text PDFChemo- and diastereoselective 1,4-conjugate additions of anionic and radical -nucleophiles to a chiral bicyclic dehydroalanine (Dha) are described. Of particular importance, radical carbon photolysis by a catalytic photoredox process using a simple method with a metal-free photocatalyst provides exceptional yields and selectivities at room temperature. Moreover, these 1,4-conjugate additions offer an excellent starting point for synthesizing enantiomerically pure carbon-β-substituted unnatural α-amino acids (UAAs), which could have a high potential for applications in chemical biology.
View Article and Find Full Text PDFMucinases of human gut bacteria cleave peptide bonds in mucins strictly depending on the presence of neighboring O-glycans. The Akkermansia muciniphila AM0627 mucinase cleaves specifically in between contiguous (bis) O-glycans of defined truncated structures, suggesting that this enzyme may recognize clustered O-glycan patches. Here, we report the structure and molecular mechanism of AM0627 in complex with a glycopeptide containing a bis-T (Galβ1-3GalNAcα1-O-Ser/Thr) O-glycan, revealing that AM0627 recognizes both the sugar moieties and the peptide sequence.
View Article and Find Full Text PDFTwo granulysin (GRNLY) based immunotoxins were generated, one containing the scFv of the SM3 mAb (SM3GRNLY) and the other the scFv of the AR20.5 mAb (AR20.5GRNLY).
View Article and Find Full Text PDFChiral bicyclic -acetal isoserine derivatives have been synthesized by an acid-catalyzed tandem ,-acetalization/intramolecular transcarbamoylation reaction between conveniently protected l-isoserine and 2,2,3,3-tetramethoxybutane. The delicate balance of the steric interactions between the different functional groups on each possible diastereoisomer controls their thermodynamic stability and hence the experimental product distribution. These chiral isoserine derivatives undergo diastereoselective alkylation at the α position, proceeding with either retention or inversion of the configuration depending on the relative configuration of the stereocenters.
View Article and Find Full Text PDFFUT8 is an essential α-1,6-fucosyltransferase that fucosylates the innermost GlcNAc of N-glycans, a process called core fucosylation. , FUT8 exhibits substrate preference for the biantennary complex N-glycan oligosaccharide (G0), but the role of the underlying protein/peptide to which N-glycans are attached remains unclear. Here, we explored the FUT8 enzyme with a series of N-glycan oligosaccharides, N-glycopeptides, and an Asn-linked oligosaccharide.
View Article and Find Full Text PDFProtein conjugates are valuable tools for studying biological processes or producing therapeutics, such as antibody-drug conjugates. Despite the development of several protein conjugation strategies in recent years, the ability to modify one specific amino acid residue on a protein in the presence of other reactive side chains remains a challenge. We show that monosubstituted cyclopropenone (CPO) reagents react selectively with the 1,2-aminothiol groups of N-terminal cysteine residues to give a stable 1,4-thiazepan-5-one linkage under mild, biocompatible conditions.
View Article and Find Full Text PDFC1GalT1 is an essential inverting glycosyltransferase responsible for synthesizing the core 1 structure, a common precursor for mucin-type O-glycans found in many glycoproteins. To date, the structure of C1GalT1 and the details of substrate recognition and catalysis remain unknown. Through biophysical and cellular studies, including X-ray crystallography of C1GalT1 complexed to a glycopeptide, we report that C1GalT1 is an obligate GT-A fold dimer that follows a S2 mechanism.
View Article and Find Full Text PDFThe large family of polypeptide GalNAc-transferases (GalNAc-Ts) controls with precision how GalNAc -glycans are added in the tandem repeat regions of mucins (, MUC1). However, the structural features behind the creation of well-defined and clustered patterns of -glycans in mucins are poorly understood. In this context, herein, we disclose the full process of MUC1 -glycosylation by GalNAc-T2/T3/T4 isoforms by NMR spectroscopy assisted by molecular modeling protocols.
View Article and Find Full Text PDF