Background: Locally advanced colon cancer is a high-risk condition for tumour recurrence with poor survival. The current treatment is surgery followed by adjuvant chemotherapy based on fluoropyrimidines and oxaliplatin. This approach has improved the oncological outcomes on this population, however the mucinous condition has not been studied in depth and although the evidence is weak, it is thought to have a worse response to systemic chemotherapy.
View Article and Find Full Text PDFArtificial Neural Networks (ANNs) have been used in a multitude of real-world applications given their predictive capabilities, and algorithms based on gradient descent, such as Backpropagation (BP) and variants, are usually considered for their optimisation. However, these algorithms have been shown to get stuck at local optima, and they require a cautious design of the architecture of the model. This paper proposes a novel memetic training method for simultaneously learning the ANNs structure and weights based on the Coral Reef Optimisation algorithms (CROs), a global-search metaheuristic based on corals' biology and coral reef formation.
View Article and Find Full Text PDF