J Venom Anim Toxins Incl Trop Dis
July 2024
Background: Loxoscelism refers to a set of clinical manifestations caused by the bite of spiders from the genus. The classic clinical symptoms are characterized by an intense inflammatory reaction at the bite site followed by local necrosis and can be classified as cutaneous loxoscelism. This cutaneous form presents difficult healing, and the proposed treatments are not specific or effective.
View Article and Find Full Text PDFThe transcription factor, early growth response-1 (EGR-1), is involved in the regulation of cell differentiation, proliferation, and apoptosis in response to different stimuli. EGR-1 is described to be involved in pancreatic endoderm differentiation, but the regulatory mechanisms controlling its action are not fully elucidated. Our previous investigation reported that exposure of mouse embryonic stem cells (mESCs) to the chemical nitric oxide (NO) donor diethylenetriamine nitric oxide adduct (DETA-NO) induces the expression of early differentiation genes such as pancreatic and duodenal homeobox 1 ().
View Article and Find Full Text PDFNitric oxide (NO) is a gaseous biomolecule endogenously synthesized with an essential role in embryonic development and several physiological functions, such as regulating mitochondrial respiration and modulation of the immune response. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field.
View Article and Find Full Text PDFThe optimization of conditions to promote the stemness of pluripotent cells in vitro is instrumental for their use in advanced therapies. We show here that exposure of human iPSCs and human ESCs to low concentrations of the chemical NO donor DETA/NO leads to stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) under normoxia, with this effect being dependent on diminished Pro 402 hydroxylation and decreased degradation by the proteasome. Moreover, the master genes of pluripotency, NANOG and OCT-4, were upregulated.
View Article and Find Full Text PDFTrials
September 2021
Snakebite envenoming is a global neglected disease with an incidence of up to 2.7 million new cases every year. Although antivenoms are so-far the most effective treatment to reverse the acute systemic effects induced by snakebite envenoming, they have a limited therapeutic potential, being unable to completely neutralize the local venom effects.
View Article and Find Full Text PDFPluripotent stem cells maintain the property of self-renewal and differentiate into all cell types under clear environments. Though the gene regulatory mechanism for pluripotency has been investigated in recent years, it is still not completely understood. Here, we show several signaling pathways involved in the maintenance of pluripotency.
View Article and Find Full Text PDFCell therapy is a progressively growing field that is rapidly moving from preclinical model development to clinical application. Outcomes obtained from clinical trials reveal the therapeutic potential of stem cell-based therapy to deal with unmet medical treatment needs for several disorders with no therapeutic options. Among adult stem cells, mesenchymal stem cells (MSCs) are the leading cell type used in advanced therapies for the treatment of autoimmune, inflammatory and vascular diseases.
View Article and Find Full Text PDFβ-cells release hexameric Zn2+-insulin into the extracellular space, but monomeric Zn2+-free insulin appears to be the only biologically active form. The mechanisms implicated in dissociation of the hexamer remain unclear, but they seem to be Zn2+ concentration-dependent. In this study, we investigate the influence of albumin binding to Zn2+ on Zn2+-insulin dissociation into Zn2+-free insulin and its physiological, methodological and therapeutic relevance.
View Article and Find Full Text PDFMitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known.
View Article and Find Full Text PDFSubjects with metabolic syndrome (MetS) often show worse cognitive performance compared with the healthy population. We investigated whether microstructural white matter abnormalities are associated with cognitive performance in adults with MetS using diffusion tensor MR imaging. A total of 32 subjects with MetS (age 64.
View Article and Find Full Text PDFPancreatic and duodenal homeobox 1 (Pdx1) is a transcription factor that regulates the embryonic development of the pancreas and the differentiation toward β cells. Previously, we have shown that exposure of mouse embryonic stem cells (mESCs) to high concentrations of diethylenetriamine nitric oxide adduct (DETA-NO) triggers differentiation events and promotes the expression of Pdx1. Here we report evidence that Pdx1 expression is associated with release of polycomb repressive complex 2 (PRC2) and P300 from its promoter region.
View Article and Find Full Text PDFJ Cell Biochem
September 2016
Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness.
View Article and Find Full Text PDFIntroduction: Tremendous progress has been made in generating insulin-producing cells from pluripotent stem cells. The best outcome of the refined protocols became apparent in the first clinical trial announced by ViaCyte, based on the implantation of pancreatic progenitors that would further mature into functional insulin-producing cells inside the patient's body.
Areas Covered: Several groups, including ours, have contributed to improve strategies to generate insulin-producing cells.
Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation.
View Article and Find Full Text PDFStem cell pluripotency and differentiation are global processes regulated by several pathways that have been studied intensively over recent years. Nitric oxide (NO) is an important molecule that affects gene expression at the level of transcription and translation and regulates cell survival and proliferation in diverse cell types. In embryonic stem cells NO has a dual role, controlling differentiation and survival, but the molecular mechanisms by which it modulates these functions are not completely defined.
View Article and Find Full Text PDFHomeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition.
View Article and Find Full Text PDFThe function of pluripotency genes in differentiation is a matter of investigation. We report here that Nanog and Oct4 are reexpressed in two mouse embryonic stem cell (mESC) lines following exposure to the differentiating agent DETA/NO. Both cell lines express a battery of both endoderm and mesoderm markers following induction of differentiation with DETA/NO-based protocols.
View Article and Find Full Text PDFDiabetes mellitus (DM) is considered a global pandemic, and the incidence of DM continues to grow worldwide. Nutrients and dietary patterns are central issues in the prevention, development and treatment of this disease. The pathogenesis of DM is not completely understood, but nutrient-gene interactions at different levels, genetic predisposition and dietary factors appear to be involved.
View Article and Find Full Text PDFThe reduction of pancreatic β-cell mass is an important factor in the development of type 1 and type 2 diabetes. Understanding the mechanisms that regulate the maintenance of pancreatic β-cell mass as well as β-cell death is necessary for the establishment of therapeutic strategies. In this context, nitric oxide (NO) is a diatomic, gaseous, highly reactive molecule with biological activity that participates in the regulation of pancreatic β-cell mass.
View Article and Find Full Text PDFOver the last years, there has been great success in driving stem cells toward insulin-expressing cells. However, the protocols developed to date have some limitations, such as low reliability and low insulin production. The most successful protocols used for generation of insulin-producing cells from stem cells mimic in vitro pancreatic organogenesis by directing the stem cells through stages that resemble several pancreatic developmental stages.
View Article and Find Full Text PDFTaurine is a conditionally essential amino acid for human that is involved in the control of glucose homeostasis; however, the mechanisms by which the amino acid affects blood glucose levels are unknown. Using an animal model, we have studied these mechanisms. Mice were supplemented with taurine for 30 d.
View Article and Find Full Text PDFThe poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice.
View Article and Find Full Text PDFGeneration of low levels of nitric oxide (NO) contributes to beta cell survival in vitro. The purpose of this study was to explore the link between NO and the survival pathway triggered by insulin-like growth factor-1 (IGF-1) and insulin in insulin producing RINm5F cells and in pancreatic islets. Results show that exposure of cells to IGF-1/insulin protects against serum deprivation-induced apoptosis.
View Article and Find Full Text PDF