Significance: Near-infrared laser illumination is a non-invasive alternative/complement to classical stimulation methods in neuroscience but the mechanisms underlying its action on neuronal dynamics remain unclear. Most studies deal with high-frequency pulsed protocols and stationary characterizations disregarding the dynamic modulatory effect of sustained and activity-dependent stimulation. The understanding of such modulation and its widespread dissemination can help to develop specific interventions for research applications and treatments for neural disorders.
View Article and Find Full Text PDFBiohybrid circuits of interacting living and model neurons are an advantageous means to study neural dynamics and to assess the role of specific neuron and network properties in the nervous system. Hybrid networks are also a necessary step to build effective artificial intelligence and brain hybridization. In this work, we deal with the automatized online and offline adaptation, exploration and parameter mapping to achieve a target dynamics in hybrid circuits and, in particular, those that yield dynamical invariants between living and model neurons.
View Article and Find Full Text PDFMormyridae, a family of weakly electric fish, use electric pulses for communication and for extracting information from the environment (active electroreception). The electromotor system controls the timing of pulse generation. Ethological studies have described several sequences of pulse intervals (SPIs) related to distinct behaviors (e.
View Article and Find Full Text PDFAutonomous robotic search problems deal with different levels of uncertainty. When uncertainty is low, deterministic strategies employing available knowledge result in most effective searches. However, there are domains where uncertainty is always high since information about robot location, environment boundaries or precise reference points is unattainable, e.
View Article and Find Full Text PDFHybrid circuits built by creating mono- or bi-directional interactions among living cells and model neurons and synapses are an effective way to study neuron, synaptic and neural network dynamics. However, hybrid circuit technology has been largely underused in the context of neuroscience studies mainly because of the inherent difficulty in implementing and tuning this type of interactions. In this paper, we present a set of algorithms for the automatic adaptation of model neurons and connections in the creation of hybrid circuits with living neural networks.
View Article and Find Full Text PDFBy studying different sources of temporal variability in central pattern generator (CPG) circuits, we unveil fundamental aspects of the instantaneous balance between flexibility and robustness in sequential dynamics -a property that characterizes many systems that display neural rhythms. Our analysis of the triphasic rhythm of the pyloric CPG (Carcinus maenas) shows strong robustness of transient dynamics in keeping not only the activation sequences but also specific cycle-by-cycle temporal relationships in the form of strong linear correlations between pivotal time intervals, i.e.
View Article and Find Full Text PDFComput Methods Programs Biomed
July 2019
Background And Objectives: P300 is an Event Related Potential control signal widely used in Brain Computer Interfaces. Using the oddball paradigm, a P300 speller allows a human to spell letters through P300 events produced by his/her brain. One of the most common issues in the detection of this event is that its structure may differ between different subjects and over time for a specific subject.
View Article and Find Full Text PDFClosed-loop technologies provide novel ways of online observation, control and bidirectional interaction with the nervous system, which help to study complex non-linear and partially observable neural dynamics. These protocols are often difficult to implement due to the temporal precision required when interacting with biological components, which in many cases can only be achieved using real-time technology. In this paper we introduce RTHybrid (www.
View Article and Find Full Text PDFIn this paper, we apply a real time activity-dependent protocol to study how freely swimming weakly electric fish produce and process the timing of their own electric signals. Specifically, we address this study in the elephant fish, Gnathonemus petersii, an animal that uses weak discharges to locate obstacles or food while navigating, as well as for electro-communication with conspecifics. To investigate how the inter pulse intervals vary in response to external stimuli, we compare the response to a simple closed-loop stimulation protocol and the signals generated without electrical stimulation.
View Article and Find Full Text PDFInt J Neural Syst
November 2014
This work experimentally analyzes the learning and retrieval capabilities of the diluted metric attractor neural network when applied to collections of fingerprint images. The computational cost of the network decreases with the dilution, so we can increase the region of interest to cover almost the complete fingerprint. The network retrieval was successfully tested for different noisy configurations of the fingerprints, and proved to be robust with a large basin of attraction.
View Article and Find Full Text PDFEarly olfactory deprivation in rodents is accompanied by an homeostatic regulation of the synaptic connectivity in the olfactory bulb (OB). However, its consequences in the neural sensitivity and discrimination have not been elucidated. We compared the odorant sensitivity and discrimination in early sensory deprived and normal OBs in anesthetized rats.
View Article and Find Full Text PDFWe designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal.
View Article and Find Full Text PDFThe idea of closed-loop interaction in in vitro and in vivo electrophysiology has been successfully implemented in the dynamic clamp concept strongly impacting the research of membrane and synaptic properties of neurons. In this paper we show that this concept can be easily generalized to build other kinds of closed-loop protocols beyond (or in addition to) electrical stimulation and recording in neurophysiology and behavioral studies for neuroethology. In particular, we illustrate three different examples of goal-driven real-time closed-loop interactions with drug microinjectors, mechanical devices and video event driven stimulation.
View Article and Find Full Text PDFThe use of electrostatic force microscopy (EFM) to characterize and manipulate surfaces at the nanoscale usually faces the problem of dealing with systems where several parameters are not known. Artificial neural networks (ANNs) have demonstrated to be a very useful tool to tackle this type of problems. Here, we show that the use of ANNs allows us to quantitatively estimate magnitudes such as the dielectric constant of thin films.
View Article and Find Full Text PDFClinical olfactory tests are used to address hyposmia/anosmia levels in patients with different types of olfactory impairments. Typically, a given test is employed clinically and then replaced by a new one after a certain period of use which can range from days to several months. There is a need to assess control quality of these tests and also for a procedure to quantify their degradation over time.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2009
The retrieval abilities of spatially uniform attractor networks can be measured by the global overlap between patterns and neural states. However, we found that nonuniform networks, for instance, small-world networks, can retrieve fragments of patterns (blocks) without performing global retrieval. We propose a way to measure the local retrieval using a parameter that is related to the fluctuation of the block overlaps.
View Article and Find Full Text PDFWe propose a simple measure of neural sensitivity for characterizing stimulus coding. Sensitivity is defined as the fraction of neurons that show positive responses to n stimuli out of a total of N. To determine a positive response, we propose two methods: Fisherian statistical testing and a data-driven Bayesian approach to determine the response probability of a neuron.
View Article and Find Full Text PDFMechanical stimulation is widely used to study sensory encoding in the nervous system of living organisms. The stimulation of mechano-receptor neurons is achieved through a large variety of devices that generate movement or vibration. In many situations, a hard real-time (RT) control of the device (in the millisecond time scale) is needed to produce realistic mechanical stimuli.
View Article and Find Full Text PDFRecent experiments have revealed the existence of neural signatures in the activity of individual cells of the pyloric central pattern generator (CPG) of crustacean. The neural signatures consist of cell-specific spike timings in the bursting activity of the neurons. The role of these intraburst neural fingerprints is still unclear.
View Article and Find Full Text PDFNeural Netw
September 2004
The analysis of an optimal neural system that maps stimuli into unique sequences of activations of fundamental atoms or functional clusters (FCs) is carried out. We say that it is perfect because the system maps with an injective function every stimulus in minimum time with the least number of FCs, such that every FC is activated only once. The neural system has the possibility to sustain several sequences in parallel.
View Article and Find Full Text PDF