Publications by authors named "Francisco Arellano-Espitia"

The rapid growth in the industrial sector has required the development of more productive and reliable machinery, and therefore, leads to complex systems. In this regard, the automatic detection of unknown events in machinery represents a greater challenge, since uncharacterized catastrophic faults can occur. However, the existing methods for anomaly detection present limitations when dealing with highly complex industrial systems.

View Article and Find Full Text PDF

Scientific and technological advances in the field of rotatory electrical machinery are leading to an increased efficiency in those processes and systems in which they are involved. In addition, the consideration of advanced materials, such as hybrid or ceramic bearings, are of high interest towards high-performance rotary electromechanical actuators. Therefore, most of the diagnosis approaches for bearing fault detection are highly dependent of the bearing technology, commonly focused on the metallic bearings.

View Article and Find Full Text PDF

Fault diagnosis in manufacturing systems represents one of the most critical challenges dealing with condition-based monitoring in the recent era of smart manufacturing. In the current Industry 4.0 framework, maintenance strategies based on traditional data-driven fault diagnosis schemes require enhanced capabilities to be applied over modern production systems.

View Article and Find Full Text PDF