Temephos is an organophosphorus pesticide widely used as a larvicide in public health campaigns to control vector-borne diseases. Data on the urinary elimination of temephos metabolites are limited, and there is no validated biomarker of exposure for its evaluation. This study aimed to determine the urinary excretion kinetics of temephos and its metabolites in adult male rats.
View Article and Find Full Text PDFChlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides. Because CPF was described as a toxic compound without safe levels of exposure for children, certain countries in Latin America and the European Union have banned or restricted its use; however, in Mexico it is used very frequently. The aim of this study was to describe the current situation of CPF in Mexico, as well as its use, commercialization, and presence in soil, water, and aquatic organisms in an agricultural region of Mexico.
View Article and Find Full Text PDFPesticide toxicity, both acute and chronic, is a global public health concern. Pesticides are involved in abnormal inflammatory responses by interfering with the normal physiology and metabolic status of cells. In this regard, inflammatory indices aggregate index of systemic inflammation (AISI), monocyte-to-high-density lipoprotein ratio, monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte platelet ratio (NLPR), neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune inflammation index, and systemic inflammation response index (SIRI) have been used as predictive markers of inflammatory status in several diseases and also in acute poisoning events.
View Article and Find Full Text PDFTemephos (,,','-tetramethyl ,'-thiodi--phenylene bis(phosphorothioate)) is a larvicide belonging to the family of organophosphate pesticides used for the control of different vectors of diseases, such as dengue, Zika, chikungunya, and dracunculiasis. The aim of this review was to discuss the available published information about temephos toxicokinetics and toxicity in mammals. Temephos is quickly absorbed in the gastrointestinal tract, distributed to all organs, and then it accumulates mainly in adipose tissue.
View Article and Find Full Text PDFTemephos is an organophosphorus pesticide used in control campaigns against vectors that transmit diseases, including dengue, a public health concern. The WHO classifies temephos in category III and its safe concentration (low-observable-adverse-effect level) in male rats is 100 mg/kg/day for up to 44 days. Temephos inhibits acetylcholinesterase (AChE) and is metabolized in different tissues, probably by mixed-function oxidases; one of its metabolites is bisphenol S (BPS), which is considered an endocrine disruptor.
View Article and Find Full Text PDFThe organophosphate (OP) pesticides are neurotoxic compounds widely used around the world. Evaluation of OP exposure in human studies is important for enabling adequate data analyses and drawing accurate conclusions. The aim of this study was to analyze OP exposure biomarkers and their relationships in a Mexican population with different exposure levels.
View Article and Find Full Text PDFTemephos (Tem) is the larvicide of choice to control mosquito transmission of dengue, Zika, and chikungunya. The toxicokinetic and toxicological information of temephos is very limited. The aim of this work was to determine the toxicokinetics and dosimetry of temephos and its metabolites.
View Article and Find Full Text PDFTemephos is an organophosphorothioate (OPT) larvicide used for controlling vectors of diseases such as dengue, chikungunya, and Zika. OPTs require a metabolic activation mediated by cytochrome P540 (CYP) to cause toxic effects, such as acetylcholinesterase (AChE) activity inhibition. There is no information about temephos biotransformation in humans, and it is considered to have low toxicity in mammals.
View Article and Find Full Text PDFTemephos (Tem) is an organophosphorus pesticide widely used to kill and prevent the growth of the main vectors for the transmission of dengue, zika, and chikungunya viruses. In chlorinated water, Tem is oxidized to its dioxon-sulfoxide (Tem-dox-SO), dioxon-sulfone (Tem-dox-SO), and sulfoxide (Tem-SO) derivatives; however, these compounds are not commercially available to be used as standards and in toxicological studies. In the present study, we synthesized and characterized the Tem-oxidation products and the compound 4,4'-sulfinyldiphenol.
View Article and Find Full Text PDF