Recently a noncentrosymmetric single crystal of a dibenzoate derivative, namely, dimethyl-4,4'-(methylenebis(azanediyl))dibenzoate, with second harmonic generation activities at 405 nm and ultrafast self-healing activity was reported by Mondal et al. in in 2023. Here, the linear and nonlinear optical properties of this notable molecular crystal were simulated using 1,611,464 atoms in the Supermolecule approach at the DFT/CAM-B3LYP/aug-cc-pVTZ level.
View Article and Find Full Text PDFContext: In this study, we detail the synthesis and crystallographic characterization of an unprecedented structure, specifically hypoxanthinium chloride monohydrate ((I) hereafter), which crystallizes in the monoclinic P2/c space group. A comparative analysis was conducted with four related hypoxanthinium salts: hypoxanthinium bromide monohydrate (II), 9-methylhypoxanthinium chloride monohydrate (III), hypoxanthinium nitrate monohydrate (IV), and hypoxanthinium perchlorate monohydrate (V). This analysis has focused mainly on their crystal packing, hydrogen-bonding networks, and non-classical intermolecular interactions, as elucidated by comprehensive Hirshfeld surface and topological analyses.
View Article and Find Full Text PDFIn this study, we report the synthesis of a new compound, 4,4-dimethyl-2-(methylsulfanyl)-6-(4-phenoxyphenyl)pyrimidine-4,6-diamine (DMS), and its comprehensive analysis through structural and spectroscopic characterizations, reactivity parameters, and nonlinear optical properties, utilizing a combination of experimental and computational techniques. The experimental aspect of the investigation encompassed structural characterization using X-ray diffraction and spectroscopic assessments employing Fourier-transform infrared, Raman, and nuclear magnetic resonance techniques, along with thermal analysis. Our computational approach involved density functional theory (DFT) calculations and molecular dynamics (MD) simulations to examine the local reactivity properties of DMS.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2023
In recent years, scientists have been very interested in single crystals of monoaromatic compounds with mechanical softness, but they are hard to find. The present work reports a comparative study of structural, spectroscopic, and quantum chemical investigations of three structurally similar mechanically bending monoaromatic compounds, namely, 2-amino-3-nitro-5-chloro pyridine (I), 2-amino-3-nitro-5-bromo pyridine (II), and 2-amino-3-nitro-5-iodo pyridine (III). The mechanical responses of the three organic crystals studied here are very intriguing due to the similarity of their chemical structures, which only differ in the presence of halogen atoms (Cl, Br, and I) at the fifth position of the pyridine ring and are explained through examining intermolecular interaction energies from energy frameworks analysis, slip layer topology, and Hirshfeld surface analysis.
View Article and Find Full Text PDFThe linear polarizability, first and second hyperpolarizabilities of the asymmetric unit of DAPSH crystal are studied and compared with available experimental results. The polarization effects are included using an iterative polarization procedure, which ensures the convergence of the dipole moment of DAPSH embedded within a polarization field generated by the surrounding asymmetric units whose atomic sites are considered as point charges. We estimate macroscopic susceptibilities from the results of the polarized asymmetric units in the unit cell, considering the significant contribution of the electrostatic interactions in crystal packing.
View Article and Find Full Text PDFThe structural and electronic properties of 2,3-dimethoxybenzaldehyde (2,3-DMB), 5-bromo-2,3-dimethoxybenzaldehyde (5-BRB), and 6-bromo-2,3-dimethoxybenzaldehyde (6-BRB) were extensively discussed with emphasis on linear and nonlinear optical responses. The intermolecular interactions were comparatively studied by Hirshfeld surfaces, quantum theory of atoms in molecules (QTAIM), and natural bond orbitals (NBOs), indicating that bromine substitution decreases the H···H and C···H contacts and increases H···Br and Br···Br closed-shell interactions on crystalline arrangements. The frontier molecular orbitals and molecular electrostatic potential map, carried out at the CAM-B3LYP/6-311++G(d,p) level of theory, showed that the kinetic stability occurs in the increasing order 6-BRB < 5-BRB < 2.
View Article and Find Full Text PDFA novel 4(1H) quinolinone derivative (QBCP) was synthesized and characterized with single crystal X-ray diffraction. Hirshfeld surfaces (HS) analyses were employed as a complementary tool to evaluate the crystal intermolecular interactions. The molecular global reactivity parameters of QBCP were studied using HOMO and LUMO energies.
View Article and Find Full Text PDFIn this study, a combined experimental and theoretical study of the nonlinear optical properties (NLO) of two chalcone derivatives, (E)-3-(2-methoxyphenyl)-1-(2-(phenylsulfonylamine)phenyl)prop-2-en-1-one (MPSP) and (E)-3-(3-nitrophenyl)-1-(2-(phenylsulfonylamine)phenyl)prop-2-en-1-one (NPSP), in DMSO is reported. The single crystal structures of the compounds, which differ only by the type and position of one substituent, were grown using the slow evaporation technique, and the main structural differences are discussed. The two-photon absorption and first-order hyperpolarizability measurements were performed via the Z-scan technique and hyper-Rayleigh scattering experiment in DMSO.
View Article and Find Full Text PDFIn this work, the nonlinear optical (NLO) properties of two heterocyclic chalcones, (E)-1-(5-chlorothiophen-2-yl)-3-(thiophen-2yl)-2-propen-1-one (CLTT) and (E)-1-(5-methylfuran-2-yl)-3-(5-methylthiophen-2-yl)prop-2en-1-one (2MFT), are investigated. Using an iterative electrostatic embedding approach via the Møller-Plesset perturbation (MP2) theory, the chalcone crystals were simulated and the polarization effects on the isolated molecules are investigated. The electrical parameters of CLTT and 2MFT as dipole moment and linear polarizability were calculated via MP2/6-311++G(d) and the second hyperpolarizability was obtained via DFT/CAM-B3-LYP/6-311++G(d) level.
View Article and Find Full Text PDF