Publications by authors named "Francisca Ruiz-Jaen"

Background: Respiratory and urinary tract infections are frequent complications in patients with severe stroke. Stroke-associated infection is mainly due to opportunistic commensal bacteria of the microbiota that may translocate from the gut. We investigated the mechanisms underlying gut dysbiosis and poststroke infection.

View Article and Find Full Text PDF

Abnormalities in myelination are associated to behavioral and cognitive dysfunction in neurodevelopmental psychiatric disorders. Thus, therapies to promote or accelerate myelination could potentially ameliorate symptoms in autism. Clemastine, a histamine H1 antagonist with anticholinergic properties against muscarinic M1 receptor, is the most promising drug with promyelinating properties.

View Article and Find Full Text PDF

Brain CD11c cells share features with microglia and dendritic cells (DCs). Sterile inflammation increases brain CD11c cells, but their phenotype, origin, and functions remain largely unknown. We report that, after cerebral ischemia, microglia attract DCs to the inflamed brain, and astroglia produce Flt3 ligand, supporting development and expansion of CD11c cells.

View Article and Find Full Text PDF

Ischemic stroke causes brain tissue damage and may release central nervous system (CNS)-specific peptides to the periphery. Neural antigen presentation in the lymphoid tissue could prime immune cells and result in adaptive immune response. However, autoimmune responses against neural antigens are not commonly uncovered after stroke.

View Article and Find Full Text PDF

Inflammatory Ly6CCCR2 monocytes infiltrate the brain after stroke but their functions are not entirely clear. We report that CCR2 monocytes and CCR2 lymphocytes infiltrate the brain after permanent ischemia. To underscore the role of CCR2 monocytes, we generated mice with selective CCR2 deletion in monocytes.

View Article and Find Full Text PDF

Stroke attracts neutrophils to the injured brain tissue where they can damage the integrity of the blood-brain barrier and exacerbate the lesion. However, the mechanisms involved in neutrophil transmigration, location and accumulation in the ischemic brain are not fully elucidated. Neutrophils can reach the perivascular spaces of brain vessels after crossing the endothelial cell layer and endothelial basal lamina of post-capillary venules, or migrating from the leptomeninges following pial vessel extravasation and/or a suggested translocation from the skull bone marrow.

View Article and Find Full Text PDF