Histone post-translational modifications (PTMs) regulate gene expression patterns through epigenetic mechanisms. The 5 histone proteins (H1, H2A, H2B, H3, and H4) are extensively modified, with over 75 distinct modification types spanning more than 200 sites. Despite strong advances in mass spectrometry-based approaches, identification and quantification of modified histone peptides remains challenging due to factors such as isobaric peptides, pseudo-isobaric PTMs, and low stoichiometry of certain marks.
View Article and Find Full Text PDFThe nucleolus is sensitive to stress and can orchestrate a chain of cellular events in response to stress signals. Despite being a growth factor, FGF2 has antiproliferative and tumor-suppressive functions in some cellular contexts. In this work, we investigated how the antiproliferative effect of FGF2 modulates chromatin-, nucleolus- and rDNA-associated proteins.
View Article and Find Full Text PDFThe interest in MS-based analysis of modified nucleic acids is increasing due to the application of nucleic acids in therapeutics. However, there are few available integrated platforms for characterizing nucleic acid modifications. Herein, we report a general mass spectrometry-based SWATH platform to identify and quantify both RNA and DNA modifications, which we call SWATH analysis of modified nucleic acids (SWAMNA).
View Article and Find Full Text PDFEukaryotic ribosome biogenesis is an elaborate process during which ribosomal proteins assemble with the pre-rRNA while it is being processed and folded. Hundreds of assembly factors (AF) are required and transiently recruited to assist the sequential remodeling events. One of the most intricate ones is the stepwise removal of the internal transcribed spacer 2 (ITS2), between the 5.
View Article and Find Full Text PDFTrypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin.
View Article and Find Full Text PDF