Epilepsy is a disease characterized by the periodic occurrence of seizures. Seizures can be controlled by antiseizure medications, which can improve the lives of individuals with epilepsy when given proper treatment. Therefore, this study aimed to review the scientific literature on brain neuroplasticity after treatment with antiseizure drugs in different regions of the brain.
View Article and Find Full Text PDFWith the advancement of in vivo studies and clinical trials, the pathogenesis of neurodegenerative diseases has been better understood. However, gaps still need to be better elucidated, which justifies the publication of reviews that explore the mechanisms related to the development of these diseases. Studies show that vitamin E supplementation can protect neurons from the damage caused by oxidative stress, with a positive impact on the prevention and progression of neurodegenerative diseases.
View Article and Find Full Text PDFIntroduction: Neurodegenerative diseases are characterized by neuronal dysfunction and death. Studies suggest that some seed extracts have a neuroprotective effect. Considering the increased incidence of these diseases and the need for new effective therapies with fewer side effects, this review aimed to assess the evidence of the efficacy and safety of seed extracts in experimental models of neurodegeneration.
View Article and Find Full Text PDFBackground: Conditions along the brain-gut-microbiota (BGM) axis can significantly contribute to the pathogenesis of Alzheimer's disease (AD). Evidence from animal studies indicates a role of probiotics in regulating mood, cognition, and stress response via the BGM axis. However, the effect of probiotics on AD needs to be better clarified in preclinical and clinical studies.
View Article and Find Full Text PDFSARS-CoV-2 infects host cells mainly through the interaction between the virus's Spike protein and the viral receptors namely Angiotensin-Converting Enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Both are highly expressed in the gastrointestinal tract, in the nasal and bronchial epithelium, as well as in the type II alveolar epithelial cells. The aim of this review is to report the evidences from the scientific literature on the pathophysiology and the available treatments for olfactory-gustatory disorders in patients with COVID-19.
View Article and Find Full Text PDFBackground: Neural cells undergo functional or sensory loss due to neurological disorders. In addition to environmental or genetic factors, oxidative stress is a major contributor to neurodegeneration. In this context, there has been a growing interest in investigating the effects of EOs (EOs) in recent years, especially in the treatment of neuropathologies.
View Article and Find Full Text PDF