Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide and, therefore, it is urgent to develop new and more efficient therapeutic approaches. Foretinib (FRT) is an oral multikinase inhibitor targeting MET (hepatocyte growth factor receptor) and RON (recepteur d'origine nantais) receptor tyrosine kinases (RTKs) that has been used in clinical trials for several solid tumors. Targeted uptake of therapeutic polymeric nanoparticles (NPs) represents a powerful approach in cancer cell drug delivery.
View Article and Find Full Text PDFAlterations of the glycosylation machinery are common events in cancer, leading to the synthesis of aberrant glycan structures by tumor cells. Extracellular vesicles (EVs) play a modulatory role in cancer communication and progression, and interestingly, several tumor-associated glycans have already been identified in cancer EVs. Nevertheless, the impact of 3D tumor architecture in the selective packaging of cellular glycans into EVs has never been addressed.
View Article and Find Full Text PDFDrug delivery using nanoparticles (NPs) represents a potential approach for therapy in cancer, such gastric cancer (GC) due to their targeting ability and controlled release properties. The use of advanced nanosystems that deliver anti-cancer drugs specifically to tumor cells may strongly rely on the expression of cancer-associated targets. Glycans aberrantly expressed by cancer cells are attractive targets for such delivery strategy.
View Article and Find Full Text PDFInnovative strategies have been proposed to increase drug delivery to the tumor site and avoid cytotoxicity, improving the therapeutic efficacy of well-established anti-cancer drugs. Alterations in normal glycosylation processes are frequently observed in cancer cells and the resulting cell surface aberrant glycans can be used as direct molecular targets for drug delivery. In the present review, we address the development of strategies, such as monoclonal antibodies, antibody-drug conjugates and nanoparticles that specific and selectively target cancer-associated glycans in tumor cells.
View Article and Find Full Text PDFMicrosatellite instability (MSI) is a molecular phenotype due to a deficient DNA mismatch repair (dMMR). In colorectal cancer (CRC), dMMR/MSI is associated with several clinical and histopathological features, influences prognosis, and is a predictive factor of response to therapy. In daily practice, dMMR/MSI profiles are identified by immunohistochemistry and/or multiplex PCR.
View Article and Find Full Text PDFIn the scenario of personalized medicine, targeted therapies are currently the focus of cancer drug development. These drugs can block the growth and spread of tumor cells by interfering with key molecules involved in malignancy, such as receptor tyrosine kinases (RTKs). MET and Recepteur d'Origine Nantais (RON), which are RTKs frequently overactivated in gastric cancer, are glycoprotein receptors whose activation have been shown to be modulated by the cellular glycosylation.
View Article and Find Full Text PDFBackground: Lung cancer (LCa) is the most frequently diagnosed and lethal cancer worldwide. Histopathological subtyping, which has important therapeutic and prognostic implications, requires material collection through invasive procedures, which might be insufficient to enable definitive diagnosis. Aberrant DNA methylation is an early event in carcinogenesis, detectable in circulating cell-free DNA (ccfDNA).
View Article and Find Full Text PDFCellular glycosylation plays a pivotal role in several molecular mechanisms controlling cell⁻cell recognition, communication, and adhesion. Thus, aberrant glycosylation has a major impact on the acquisition of malignant features in the tumor progression of patients. To mimic these in vivo features, an innovative high-throughput 3D spheroid culture methodology has been developed for gastric cancer cells.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) is one of the most incident cancers, associated with significant morbidity and mortality, and usually classified into three main molecular pathways: chromosomal instability, microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Currently, available screening methods are either costly or of limited specificity, impairing global implementation. More cost-effective strategies, including DNA methylation-based tests, might prove advantageous.
View Article and Find Full Text PDFis considered one of the most important pathogens associated with bovine mastitis. While traditionally acknowledged as an environmental pathogen, has been shown to adopt a contagious epidemiological pattern in several dairy herds. Since different control strategies are employed depending on the mode of transmission, in-depth studies of populations are essential to determine the best practices to control this pathogen.
View Article and Find Full Text PDF