Publications by authors named "Francis X Farrell"

Interstitial renal fibrosis is a major pathophysiological manifestation of patients diagnosed with Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN) and other inflammatory diseases. Adenosine signaling is an innate autocrine and paracrine cellular signaling pathway involving several key mediators that are elevated in the blood and kidneys of patients with DN. In these studies, we hypothesized that extracellular adenosine signals through one or more functional adenosine GPCRs on renal fibroblasts which increases profibrotic and proinflammatory mediators by inducing an activated fibroblast phenotype.

View Article and Find Full Text PDF

Background: Diabetes is the leading cause of end stage renal disease (ESRD) in the United States, representing 44% of incident cases [1]. In this study, serum and peripheral blood collected from diabetic patients in five stages of chronic kidney disease (CKD), as defined by glomerular filtration rate (GFR), were compared to healthy (non-CKD) subjects.

Methods: Serum samples were analyzed for 39 inflammatory or immune mediator protein levels and peripheral blood samples were analyzed for expression of 35 gene transcripts.

View Article and Find Full Text PDF

Monocyte/macrophage recruitment correlates strongly with the progression of diabetic nephropathy. Tumor necrosis factor-α (TNF-α) is produced by monocytes/macrophages but the direct role of TNF-α and/or macrophage-derived TNF-α in the progression of diabetic nephropathy remains unclear. Here we tested whether inhibition of TNF-α confers kidney protection in diabetic nephropathy via a macrophage-derived TNF-α-dependent pathway.

View Article and Find Full Text PDF

Background/aims: Interleukin-17A (IL-17A) is a T cell-derived inflammatory cytokine that is upregulated during renal allograft rejection. The present study sought to further describe the IL-17A-mediated proinflammatory/profibrotic activity of proximal tubule epithelium that may contribute to allograft rejection.

Methods: Immortalized (HK-2) and primary (HRPTEpiC) human proximal tubule epithelial cells were utilized for this study.

View Article and Find Full Text PDF

Given that CD4+ cells are found in the lungs of patients with fibrotic lung diseases such as idiopathic pulmonary fibrosis (IPF) we hypothesized that IL-16, a potent chemoattractant for CD4+ cells, may be involved in the pathogenesis of this disease. We found that baseline IL-16 gene expression is greater in fibroblasts isolated from IPF patients compared to non-fibrotic fibroblasts. Furthermore, IL-16 gene expression increased in IPF fibroblasts following stimulation with either of the pro-fibrotic growth factors TGFb1 or PDGF.

View Article and Find Full Text PDF

Bone morphogenic protein (BMP)-7 is a member of the BMP family which are structurally and functionally related, and part of the TGFbeta super family of growth factors. BMP-7 has been reported to inhibit renal fibrosis and TGFbeta1-induced epithelial-mesenchymal transition (EMT), in part through negative interactions with TGFbeta1 induced Smad 2/3 activation. We utilized in vivo bleomycin-induced fibrosis models in the skin and lung to determine the potential therapeutic effect of BMP-7.

View Article and Find Full Text PDF

Background: In rodent models of chronic renal disease bone morphogenetic protein-7 (BMP-7) has been shown to halt disease progression and promote recovery. Subsequent studies utilizing immortalized rodent renal cell lines showed that BMP-7 was renoprotective by antagonizing TGF-beta1-stimulated epithelial-to-mesenchymal transition (EMT). The present study sought to determine if BMP-7 prevents TGF-beta1-induced EMT in primary (RPTEC) and immortalized (HK-2) human proximal tubule epithelial cells.

View Article and Find Full Text PDF

One of the hallmarks of idiopathic pulmonary fibrosis with a usual interstitial pneumonia histological pathology (IPF/UIP) is excess collagen deposition, due to enhanced fibroblast extracellular matrix synthetic activity. Studies using murine models of lung fibrosis have elucidated a pro-fibrotic pathway involving IL-13 driving CCL2, which in turn drives TGFbeta1 in lung fibroblasts. Therefore, we sought to determine whether this pathway exists in the human fibrotic setting by evaluating human IPF/UIP fibroblasts.

View Article and Find Full Text PDF

Bone morphogenetic protein-7 (BMP-7, OP-1) is a secreted growth factor that is predominantly known for its osteoinductive properties, though it has also been implicated as having a role in mammalian kidney development. Clinical efficacy of recombinant BMP-7 has been demonstrated in the treatment of orthopedic injuries through topical application. However, the pharmaceutical development of recombinant BMP-7 for systemic delivery has presented many challenges.

View Article and Find Full Text PDF

We investigated the significance of erythropoietin receptor (EPOR) expression following treatment with recombinant human erythropoietin (rHuEPO; epoetin alpha) and the effect of recombinant epoetins (epoetin alpha, epoetin beta, and darbepoetin alpha) alone or in combination with anticancer therapy on tumor growth in two well-established preclinical models of breast carcinoma (MDA-MB-231 and MCF-7 cell lines). Expression and localization of EPOR under hypoxic and normoxic conditions in MDA-MB-231 and MCF-7 cells were evaluated by immunoblotting, flow cytometry, and immunohistochemistry. EPOR binding was evaluated using [125I]rHuEPO.

View Article and Find Full Text PDF

The incidence of pure red cell aplasia (PRCA) in patients with chronic kidney disease associated with the subcutaneous (s.c.) administration of epoetin alfa (EPREX) began to increase in 1998.

View Article and Find Full Text PDF

Erythropoietin (Epo) decreases neuronal injury and cell death in vitro and in vivo. To lay the groundwork for use of Epo as a potential therapy for brain injury, we tested the hypothesis that systemic dosing of high-dose recombinant Epo (rEpo) would result in neuroprotective rEpo concentrations in the spinal fluid of adult and developing animals. This report characterizes the pharmacokinetics of high-dose rEpo in the blood and spinal fluid of juvenile and adult nonhuman primates (n = 7) and fetal sheep (n = 37) following a single injection.

View Article and Find Full Text PDF

Erythropoietin (EPO) is the primary modulator of red blood cell production. Recently EPO has received considerable attention for its functions outside of hematopoiesis, including its effects in the nervous system where it has been shown to act as a neuroprotectant. To understand the function of EPO in the nervous system and to determine if EPO functions through the same signaling pathways identified in hematopoietic cells, we used cDNA array hybridization and RT-PCR to investigate the changes in gene expression induced by EPO in the neuronal-like PC-12 cell line.

View Article and Find Full Text PDF