Publications by authors named "Francis Watsenga"

Assessing patterns and evolution of insecticide resistance in malaria vectors is a prerequisite to design suitable control strategies. Here, we characterised resistance profile in Anopheles gambiae and Anopheles funestus in Kinshasa and assess the level of aggravation by comparing to previous 2015 estimates. Both species collected in July 2021 were highly resistant to pyrethroids at 1×, 5× and 10× concentrations (mortality < 90%) and remain fully susceptible to bendiocarb and pirimiphos methyl.

View Article and Find Full Text PDF

New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers.

View Article and Find Full Text PDF

Background: The Democratic Republic of the Congo (DRC) is the second most malaria-affected country in the world with 21,608,681 cases reported in 2019. The Kongo Central (KC) Province has a malaria annual incidence of 163 cases/per 1000 inhabitants which are close to the national average of 153.4/1000.

View Article and Find Full Text PDF

Studies of insecticide resistance provide insights into the capacity of populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs). Resistance in the major malaria vectors has increased in concert with the expansion of LLIN distributions.

View Article and Find Full Text PDF

Background: New insecticides with a novel mode of action such as neonicotinoids have recently been recommended for public health by WHO. Resistance monitoring of such novel insecticides requires a robust protocol to monitor the development of resistance in natural populations. In this study, we comparatively used three different solvents to assess the susceptibility of malaria vectors to neonicotinoids across Africa.

View Article and Find Full Text PDF

Background: Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides for malaria vector control, threatens the continued efficacy of vector control tools. Target-site resistance is an important genetic resistance mechanism caused by mutations in the voltage-gated sodium channel (Vgsc) gene that encodes the pyrethroid target-site. Understanding the geographic distribution of target-site resistance, and temporal trends across different vector species, can inform strategic deployment of vector control tools.

View Article and Find Full Text PDF

Background: Following agricultural use and large-scale distribution of insecticide-treated nets (ITNs), malaria vector resistance to pyrethroids is widespread in sub-Saharan Africa. Interceptor® G2 is a new dual active ingredient (AI) ITN treated with alpha-cypermethrin and chlorfenapyr for the control of pyrethroid-resistant malaria vectors. In anticipation of these new nets being more widely distributed, testing was conducted to develop a chlorfenapyr susceptibility bioassay protocol and gather susceptibility information.

View Article and Find Full Text PDF

Early 2019, a chikungunya virus (CHIKV) outbreak hit the Democratic Republic of the Congo (DRC). Though seldomly deadly, this mosquito-borne disease presents as an acute febrile (poly)arthralgia often followed by long-term sequelae. Although is the primary vector, an amino acid substitution in the viral envelope gene E1 (A226V) is causing concern as it results in increased transmission by , a mosquito with a much wider geographical distribution.

View Article and Find Full Text PDF

Background: Anecdotal reports from DRC suggest that long-lasting insecticidal nets (LLIN) distributed through mass campaigns in DRC may not last the expected average three years. To provide the National Malaria Control Programme with evidence on physical and insecticidal durability of nets distributed during the 2016 mass campaign, two brands of LLIN, DawaPlus 2.0 and DuraNet©, were monitored in neighbouring and similar health zones in Sud Ubangi and Mongala Provinces.

View Article and Find Full Text PDF

Background: Between 2011 and 2018, an estimated 134.8 million pyrethroid-treated long-lasting insecticidal nets (LLINs) were distributed nationwide in the Democratic Republic of Congo (DRC) for malaria control. Pyrethroid resistance has developed in DRC in recent years, but the intensity of resistance and impact on LLIN efficacy was not known.

View Article and Find Full Text PDF

, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the  genera, but has recently been found in  s.l. populations in West Africa.

View Article and Find Full Text PDF

Background: Globally, the Democratic Republic of Congo (DRC) accounted for 9% of malaria cases and 10% of malaria deaths in 2015. As part of control efforts, more than 40 million long-lasting insecticidal nets (LLINs) were distributed between 2008 and 2013, resulting in 70% of households owning one or more LLINs in 2014. To optimize vector control efforts, it is critical to monitor vector behaviour and insecticide resistance trends.

View Article and Find Full Text PDF

Accounting for approximately 11% of all malaria cases, the Democratic Republic of the Congo (DRC) is central to malaria elimination efforts. To support vector control interventions in DRC, we characterized the dynamics and impact of insecticide resistance in major malaria vectors in 2015. High Plasmodium infection rates were recorded in Anopheles gambiae and Anopheles funestus, with Plasmodium falciparum predominant over Plasmodium malariae.

View Article and Find Full Text PDF