Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor.
View Article and Find Full Text PDFThe blood fluke Schistosoma mansoni is the causative agent of the intestinal form of schistosomiasis (or bilharzia). Emergence of Schistosoma mansoni with reduced sensitivity to praziquantel, the drug currently used to treat this neglected disease, has underlined the need for development of new strategies to control schistosomiasis. Our ability to screen drug libraries for antischistosomal compounds has been hampered by the lack of validated S.
View Article and Find Full Text PDFBovine CD38/NAD(+) glycohydrolase catalyzes the hydrolysis of NAD(+) to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide-ribosyl bond.
View Article and Find Full Text PDFSchistosoma mansoni NAD(+) catabolizing enzyme (SmNACE), a distant homolog of mammalian CD38, shows significant structural and functional analogy to the members of the CD38/ADP-ribosyl cyclase family. The hallmark of SmNACE is the lack of ADP-ribosyl cyclase activity that might be ascribed to subtle changes in its active site. To better characterize the residues of the active site we determined the kinetic parameters of nine mutants encompassing three acidic residues: (i) the putative catalytic residue Glu202 and (ii) two acidic residues within the 'signature' region (the conserved Glu124 and the downstream Asp133), (iii) Ser169, a strictly conserved polar residue and (iv) two aromatic residues (His103 and Trp165).
View Article and Find Full Text PDFBovine CD38/NAD(+)glycohydrolase (bCD38) catalyses the hydrolysis of NAD(+) into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2'-fluorinated analogs of NAD(+). Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218.
View Article and Find Full Text PDFA more complete understanding of the mechanism of action of TLR agonists has fueled the investigation of new synthetic immunoadjuvants. In this context, we designed and synthesized glycolipids of the type Pam(2)Cys-α-Galactose as novel immunoadjuvants. Their synthesis required modifying a hydrophobic tBoc-[2,3-bispalmitoyloxy-(2R)-propyl]-R-cysteinyl moiety, i.
View Article and Find Full Text PDFCD38 is a multifunctional enzyme which is ubiquitously distributed in mammalian tissues. It is involved in the conversion of NAD(P)(+) into cyclic ADP-ribose, NAADP(+) and ADP-ribose and the role of these metabolites in multiple Ca(2+) signaling pathways makes CD38 a novel potential pharmacological target. The dire paucity of CD38 inhibitors, however, renders the search for new molecular tools highly desirable.
View Article and Find Full Text PDFSynthetic and molecularly defined constructs containing the minimal components to mimic and amplify the physiological immune response are able to induce an efficient cytotoxic response. In the current study this approach was applied to the development of highly versatile liposomal constructs to co-deliver peptide epitopes in combination with TLR agonists in order to induce a specific anti-tumor cellular immune response against ErbB2 protein-expressing tumor cells. Liposomes containing ErbB2 p63-71 cytotoxic T lymphocyte (CTL) and HA307-319 T- helper (Th) peptide epitopes associated to innovative synthetic TLR2/1 (Pam(3)CAG) or TLR2/6 agonists (Pam(2)CAG and Pam(2)CGD), were injected in mice bearing ErbB2 protein-expressing tumor cells.
View Article and Find Full Text PDFSchistosomiasis is a major tropical parasitic disease. For its treatment, praziquantel remains the only effective drug available and the dependence on this sole chemotherapy emphasizes the urgent need for new drugs to control this neglected disease. In this context, the newly characterized Schistosoma mansoni NAD(+) catabolizing enzyme (SmNACE) represents a potentially attractive drug target.
View Article and Find Full Text PDFCyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate are ubiquitous calcium-mobilizing messengers produced by the same family of multifunctional enzymes, the ADP-ribosyl cyclases. Not all ADP-ribosyl cyclases have been identified, and how production of different messengers is achieved is incompletely understood. Here, we report the cloning and characterization of a novel ADP-ribosyl cyclase (SpARC4) from the sea urchin, a key model organism for the study of calcium-signaling pathways.
View Article and Find Full Text PDFClick chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition, which can be performed under mild experimental conditions in aqueous media. Here, we describe the application of a model click reaction to the conjugation, in a single step of unprotected alpha-1-thiomannosyl ligands, functionalized with an azide group to liposomes containing a terminal alkyne-functionalized lipid anchor.
View Article and Find Full Text PDFBovine CD38, a type II glycoprotein, contains two potential N-glycosylation sites (Asn-201 and Asn-268) in its extracellular domain. This contrasts with the other mammalian members of the ADP-ribosyl cyclase family, such as human CD38 and BST-1/CD157, in which four such sites are present. Our study was designed to determine the occupancy of these sites in a recombinant form of this ecto-enzyme and to evaluate its impact on the protein stability and catalytic functions.
View Article and Find Full Text PDFWe have designed chemically defined diepitope constructs consisting of liposomes displaying at their surface synthetic oligosaccharides mimicking the O-antigen of the Shigella flexneri 2a lipopolysaccharide (B-cell epitope) and influenza hemagglutinin peptide HA 307-319 (Th epitope). Using well controlled and high-yielding covalent bioconjugation reactions, the two structurally independent epitopes were coupled to the lipopeptide Pam(3)CAG, i.e.
View Article and Find Full Text PDFAn important challenge for the development of new generations of vaccines is the efficient delivery of antigens to antigen presenting cells such as dendritic cells. In the present study we compare the interaction of plain and targeted liposomes, containing mono-, di-, and tetraantennary mannosyl lipid derivatives, with human monocyte-derived immature dendritic cells (iDCs). Whereas efficient mannose receptor-mediated endocytosis by iDCs was observed for the mannosylated liposomes, in contrast, only nonspecific interaction with little uptake was observed with plain liposomes.
View Article and Find Full Text PDFADP-ribosyl cyclases catalyze the transformation of nicotinamide adenine dinucleotide (NAD+) into the calcium-mobilizing nucleotide second messenger cyclic adenosine diphosphoribose (cADP-ribose) by adenine N1-cyclization onto the C-1' ' position of NAD+. The invertebrate Aplysia californica ADP-ribosyl cyclase is unusual among this family of enzymes by acting exclusively as a cyclase, whereas the other members, such as CD38 and CD157, also act as NAD+ glycohydrolases, following a partitioning kinetic mechanism. To explore the intramolecular cyclization reaction, the novel nicotinamide 2-fluoroadenine dinucleotide (2-fluoro-NAD+) was designed as a sterically very close analogue to the natural substrate NAD+, with only an electronic perturbation at the critical N1 position of the adenine base designed to impede the cyclization reaction.
View Article and Find Full Text PDFSchistosoma mansoni NAD(P)+ catabolizing enzyme (SmNACE) is a new member of the ADP-ribosyl cyclase family. In contrast to all the other enzymes that are involved in the production of metabolites that elicit Ca2+ mobilization, SmNACE is virtually unable to transform NAD+ into the second messenger cyclic ADP-ribose (cADPR). Sequence alignments revealed that one of four conserved residues within the active site of these enzymes was replaced in SmNACE by a histidine (His103) instead of the highly conserved tryptophan.
View Article and Find Full Text PDFDNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination.
View Article and Find Full Text PDFInt Immunol
July 2006
Cross-linking of CD38 on hematopoietic cells induces activation, proliferation and differentiation of mature T and B cells and mediates apoptosis of myeloid and lymphoid progenitor cells. In addition to acting as a signaling receptor, CD38 is also an enzyme capable of producing several calcium-mobilizing metabolites, including cyclic adenosine diphosphate ribose (cADPR). It has been previously postulated that the calcium-mobilizing metabolites produced by CD38 may regulate its receptor-based activities.
View Article and Find Full Text PDFAn efficient and convenient chemoselective conjugation method based on "click chemistry" was developed for coupling ligands to the surface of preformed liposomes. It can be performed under mild conditions in aqueous buffers; the use of a water soluble Cu(I) chelator, such as bathophenanthrolinedisulfonate, was essential to obtain good yields in reasonable reaction times. A model reaction was achieved in which, in a single step, an unprotected alpha-D-mannosyl derivative carrying a spacer arm functionalized with an azide group was conjugated to the surface of vesicles presenting a synthetic lipid carrying a terminal alkyne function.
View Article and Find Full Text PDFcADPR (cADP-ribose), a metabolite of NAD+, is known to modulate intracellular calcium levels and to be involved in calcium-dependent processes, including synaptic transmission, plasticity and neuronal excitability. However, the enzyme that is responsible for producing cADPR in the cytoplasm of neural cells, and particularly at the synaptic terminals of neurons, remains unknown. In the present study, we show that endogenous concentrations of cADPR are much higher in embryonic and neonate mouse brain compared with the adult tissue.
View Article and Find Full Text PDFADP-ribosyl cyclases are structurally conserved enzymes that are best known for catalyzing the production of the calcium-mobilizing metabolite, cyclic adenosine diphosphate ribose (cADPR), from nicotinamide adenine dinucleotide (NAD(+)). However, these enzymes also produce adenosine diphosphate ribose (ADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP(+)), both of which have been shown to modulate calcium mobilization in vitro. We have now characterized a new member of the cyclase family from Schistosoma mansoni, a member of the Platyhelminthes phylum.
View Article and Find Full Text PDFDiacylated (e.g. MALP-2) and triacylated (Pam(3)Cys derivatives) lipopeptides, deriving from the N-terminal moiety of respectively mycoplasmal and E.
View Article and Find Full Text PDFSoybean epoxide hydrolase catalyzes the oxirane ring opening of 9,10-epoxystearate via a two-step mechanism involving the formation of an alkylenzyme intermediate, which, in contrast to most epoxide hydrolases studied so far, was found to be the rate-limiting step. We have probed residues potentially involved in catalysis by site-directed mutagenesis. Mutation of His(320), a residue predicted from sequence analysis to belong to the catalytic triad of the enzyme, considerably slowed down the second half-reaction.
View Article and Find Full Text PDF