Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism.
View Article and Find Full Text PDFElimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations.
View Article and Find Full Text PDFA wealth of knowledge on the genetic mechanisms that govern aging has emerged from the study of mutants that exhibit enhanced longevity and exceptional resilience to adverse environmental conditions. In these studies, lifespan has been an excellent proxy for establishing the rate of aging, but it is not always correlated with qualitative measures of healthy aging or 'healthspan'. Although the attributes of healthspan have been challenging to define, they share some universal features that are increasingly being incorporated into aging studies.
View Article and Find Full Text PDFSince the discovery of single gene mutations that double its lifespan, the nematode Caenorhabditis elegans has provided remarkable insights into the biology of aging. The precisely measurable lifespan of worms has proven to be an efficient tool to assess the impact of various genetic, physiological and environmental factors on organismal aging. In this article, we describe methods to set up and monitor experiments to determine worm lifespan.
View Article and Find Full Text PDF