Publications by authors named "Francis P W Tang"

The successful use of homogenized horse liver for the generation of phase I in vitro metabolites has been previously reported by the authors' laboratory. Prior to the use of homogenized liver, the authors' laboratory had been using mainly horse liver microsomes for carrying out equine in vitro metabolism studies. Homogenized horse liver has shown significant advantages over liver microsomes for in vitro metabolism studies as the procedures are much quicker and have higher capability for generating more in vitro metabolites.

View Article and Find Full Text PDF

Gas chromatography-mass spectrometry (GC-MS) analysis after heptafluorobutyric anhydride (HFBA) derivatization was one of the published methods used for the quantification of ephedrine (EP) and pseudoephedrine (PE) in urine. This method allows the clear separation of the derivatized diastereoisomers on a methyl-silicone-based column. Recently the authors came across a human urine sample with apparently high levels (µg/ml) of EP and PE upon initial screening.

View Article and Find Full Text PDF

1-Testosterone (17β-hydroxy-5α-androst-1-en-3-one), a synthetic anabolic steroid, has been described as one of the most effective muscle-building supplements currently on the market. It has an anabolic potency of 200 as compared to 26 for testosterone. Apart from its abuse in human sports, it can also be a doping agent in racehorses.

View Article and Find Full Text PDF

Liquid chromatography/mass spectrometry (LC/MS) has been successfully applied to the detection of anabolic steroids in biological samples. However, the sensitive detection of saturated hydroxysteroids, such as androstanediols, by electrospray ionisation (ESI) is difficult because of their poor ability to ionise. In view of this, chemical derivatisation has been used to enhance the detection sensitivity of hydroxysteroids by LC/MS.

View Article and Find Full Text PDF

The authors' laboratory at one time employed four liquid chromatography/mass spectrometric (LC/MS) methods for the detection of a large variety of drugs in equine urine. Drug classes covered by these methods included anti-diabetics, anti-ulcers, cyclooxygenase-2 (COX-2) inhibitors, sedatives, corticosteroids, anabolic steroids, sulfur diuretics, xanthines, etc. With the objective to reduce labour and instrumental workload, a new ultra performance liquid chromatography/tandem mass spectrometric (UPLC/MS/MS) method has been developed, which encompasses all target analytes detected by the original four LC/MS methods.

View Article and Find Full Text PDF

The study of the metabolism of drugs, in particular steroids, by both in vitro and in vivo methods has been carried out in the authors' laboratory for many years. For in vitro metabolic studies, the microsomal fraction isolated from horse liver is often used. However, the process of isolating liver microsomes is cumbersome and tedious.

View Article and Find Full Text PDF

Currently there are two common radioimmunoassay-based methods for the detection of equine cryptorchidism; one measures testosterone concentrations in peripheral blood samples taken before and after an intravenous injection of human chorionic gonadotrophin (hCG) and the other measures plasma estrone sulfate. However, each of these invasive methods has its own shortfalls and neither gives unequivocal results. In this article a highly reliable gas chromatography/mass spectrometry (GC/MS) method is described based on the analysis of urine samples for the identification of cryptorchidism in horses, some as young as 2 years old.

View Article and Find Full Text PDF

This paper describes the application of gas chromatography-mass spectrometry (GC-MS) for in vitro and in vivo studies of 6-OXO in horses, with a special aim to identify the most appropriate target metabolite to be monitored for controlling the administration of 6-OXO in racehorses. In vitro studies of 6-OXO were performed using horse liver microsomes. The major biotransformation observed was reduction of one keto group at the C3 or C6 positions.

View Article and Find Full Text PDF

In September 2005, our laboratory detected the presence of 4-androstene-3,17-dione and androsterone in a standard steroid screen of a post-race gelding urine sample received from an overseas authority. All other urine samples from the same batch tested negative. Subsequent gas chromatography/mass spectrometry (GC/MS) confirmatory analyses, however, repeatedly failed to detect any amount of 4-androstene-3,17-dione and androsterone in the suspicious sample.

View Article and Find Full Text PDF

A multi-target high-throughput liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the detection of low ppt to low ppb levels of anabolic steroids, corticosteroids, anti-diabetics, and non-steroidal anti-inflammatory drugs (NSAIDs) in equine plasma was developed for the purpose of doping control. Plasma samples were first deproteinated by addition of trichloroacetic acid. Drugs were then extracted by solid-phase extraction (SPE) using Bond Elut Certify cartridges, and the extracts were analysed by a triple-quadrupole/linear ion trap LC-MS-MS instrument in positive electrospray ionization (+ESI) mode with selected reaction monitoring (SRM) scan function.

View Article and Find Full Text PDF

Quantitative determination, particularly for threshold substances in biological samples, is much more demanding than qualitative identification. A proper assessment of any quantitative determination is the measurement uncertainty (MU) associated with the determined value. The International Standard ISO/IEC 17025, "General requirements for the competence of testing and calibration laboratories", has more prescriptive requirements on the MU than its superseded document, ISO/IEC Guide 25.

View Article and Find Full Text PDF

This paper describes two high-throughput liquid chromatography-tandem mass spectrometry (LC-MS-MS) methods for the screening of two important classes of drugs in equine sports, namely corticosteroids and basic drugs, at low ppb levels in horse urine. The method utilized a high efficiency reversed-phase LC column (3.3 cm L x 2.

View Article and Find Full Text PDF

Fatty acid-binding protein (FABP) holds promise for early detection of tissue injury. This small protein (15kD) appears earlier in the blood than large proteins after cell damage. Combined its characteristics of high concentration tissue contents and low normal plasma values provide the possibility of a rapid rise above the respective reference values, and thus an early indication of the appearance of tissue injury.

View Article and Find Full Text PDF

Boldenone (1,2-dehydrotestosterone) is a common veterinary anabolic agent. Its structure is very similar to testosterone. Testosterone is endogenous in the horse, whereas there has been no report concerning the detection of endogenous boldenone.

View Article and Find Full Text PDF