Publications by authors named "Francis M Sverdrup"

Article Synopsis
  • FSHD is a muscle-wasting disease caused by the misexpression of the DUX4 transcription factor, leading to progressive muscle weakness starting from facial and shoulder muscles and eventually affecting the lower limbs.
  • The study utilized siRNAs to investigate the role of SIX family transcription factors in regulating DUX4 expression in patient-derived FSHD muscle cells, revealing that SIX1, SIX2, and SIX4 are essential for DUX4 induction during muscle differentiation.
  • Additionally, the research indicated that DUX4 actually downregulates SIX RNA levels, suggesting a negative feedback loop in the regulation of these transcription factors in FSHD contexts.
View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) is a degenerative muscle disease caused by loss of epigenetic silencing and ectopic reactivation of the embryonic double homeobox protein 4 gene (DUX4) in skeletal muscle. The p38 MAP kinase inhibitor losmapimod is currently being tested in FSHD clinical trials due to the finding that p38 inhibition suppresses DUX4 expression in preclinical models. However, the role of p38 in regulating DUX4 at different myogenic stages has not been investigated.

View Article and Find Full Text PDF

Our previous work identified compound (SLU-2633) as a potent lead compound toward the identification of a novel treatment for cryptosporidiosis, caused by the parasite (EC = 0.17 μM). While this compound is potent and orally efficacious, the mechanism of action and biological target(s) of this series are currently unknown.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) is characterized by misexpression of the double homeobox 4 (DUX4) developmental transcription factor in mature skeletal muscle, where it is responsible for muscle degeneration. Preventing expression of DUX4 mRNA is a disease-modifying therapeutic strategy with the potential to halt or reverse the course of disease. We previously reported that agonists of the -2 adrenergic receptor suppress expression by activating adenylate cyclase to increase cAMP levels.

View Article and Find Full Text PDF

Background: Facioscapulohumeral dystrophy (FSHD) is a progressive muscle disease caused by mutations that lead to epigenetic derepression and inappropriate transcription of the double homeobox 4 (DUX4) gene in skeletal muscle. Drugs that enhance the repression of DUX4 and prevent its expression in skeletal muscle cells therefore represent candidate therapies for FSHD.

Methods: We screened an aggregated chemical library enriched for compounds with epigenetic activities and the Pharmakon 1600 library composed of compounds that have reached clinical testing to identify molecules that decrease DUX4 expression as monitored by the levels of DUX4 target genes in FSHD patient-derived skeletal muscle cell cultures.

View Article and Find Full Text PDF

Click chemistry technique led to novel 1,2,3-triazole-quinine conjugates 8a-g, 10a-o, 11a-h and 13 utilizing benzotriazole-mediated synthetic approach with excellent yields. Some of the synthesized analogs (11a, 11d-h) exhibited antimalarial properties against Plasmodium falciparum strain 3D7 with potency higher than that of quinine (standard reference used) through in vitro standard procedure bio-assay. Statistically significant BMLR-QSAR model describes the bio-properties, validates the observed biological observations and identifies the most important parameters governing bio-activity.

View Article and Find Full Text PDF

Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease β-secretase (BACE), as new leads for antimalarial drug discovery.

View Article and Find Full Text PDF

Given the threat of drug resistance, there is an acute need for new classes of antimalarial agents that act via a unique mechanism of action relative to currently used drugs. We have identified a set of druglike compounds within the Tres Cantos Anti-Malarial Set (TCAMS) which likely act via inhibition of a Plasmodium aspartic protease. Structure-activity relationship analysis and optimization of these aminohydantoins demonstrate that these compounds are potent nanomolar inhibitors of the Plasmodium aspartic proteases PM-II and PM-IV and likely one or more other Plasmodium aspartic proteases.

View Article and Find Full Text PDF

Novel drugs are required for the elimination of infections caused by filarial worms, as most commonly used drugs largely target the microfilariae or first stage larvae of these infections. Previous studies, conducted in vitro, have shown that inhibition of Hsp90 kills adult Brugia pahangi. As numerous small molecule inhibitors of Hsp90 have been developed for use in cancer chemotherapy, we tested the activity of several novel Hsp90 inhibitors in a fluorescence polarization assay and against microfilariae and adult worms of Brugia in vitro.

View Article and Find Full Text PDF

Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype.

View Article and Find Full Text PDF

Amino acid and peptide conjugates of quinine were synthesized using microwave irradiation in 52-95% yields using benzotriazole methodology. The majority of these conjugates retain in vitro antimalarial activity with IC50 values below 100 nm, similar to quinine.

View Article and Find Full Text PDF

Benzotriazole-mediated syntheses led to novel bis-conjugates of quinine with quinolone antibiotics and amino acid linkers which were successfully prepared by two alternative routes with excellent yields and retention of chirality. These bis conjugates retain in vitro antimalarial activity with IC(50) values ranging from 12 to 207 nM, similar to quinine itself.

View Article and Find Full Text PDF

Foxp3(+) CD4(+) T helper cells called regulatory T (T reg) cells play a key role in controlling reactivity to self-antigens and onset of autoimmunity. T reg cells either arise in thymus and are called natural T reg (nT reg) cells or are generated in the periphery through induction of Foxp3 and are called inducible T reg (iT reg) cells. The relative contributions of iT reg cells and nT reg cells in peripheral tolerance remain unclear as a result of an inability to separate these two subsets of T reg cells.

View Article and Find Full Text PDF

Introduction: Glucocorticoids are known to attenuate bone formation in vivo leading to decreased bone volume and increased risk of fractures, whereas effects on the joint tissue are less characterized. However, glucocorticoids appear to have a reducing effect on inflammation and pain in osteoarthritis. This study aimed at characterizing the effect of glucocorticoids on chondrocytes, osteoclasts, and osteoblasts.

View Article and Find Full Text PDF

Objective: Statins possess anti-inflammatory properties. This study was undertaken to characterize the mechanism of action of statin drugs on collagenase expression in primary human osteoarthritic cartilage tissue.

Method: Human articular chondrocytes and cartilage explants from osteoarthritic donors were exposed to simvastatin in the presence or absence of interleukin-1 beta (IL-1beta).

View Article and Find Full Text PDF